IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2205.00279.html
   My bibliography  Save this paper

Distance between closed sets and the solutions to stochastic partial differential equations

Author

Listed:
  • Toshiyuki Nakayama
  • Stefan Tappe

Abstract

The goal of this paper is to clarify when the solutions to stochastic partial differential equations stay close to a given subset of the state space for starting points which are close as well. This includes results for deterministic partial differential equations. As an example, we will consider the situation where the subset is a finite dimensional submanifold with boundary. We also discuss applications to mathematical finance, namely the modeling of the evolution of interest rate curves.

Suggested Citation

  • Toshiyuki Nakayama & Stefan Tappe, 2022. "Distance between closed sets and the solutions to stochastic partial differential equations," Papers 2205.00279, arXiv.org, revised Oct 2024.
  • Handle: RePEc:arx:papers:2205.00279
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2205.00279
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michael Tehranchi, 2005. "A note on invariant measures for HJM models," Finance and Stochastics, Springer, vol. 9(3), pages 389-398, July.
    2. Eckhard Platen & Steffan Tappe, 2015. "Real-World Forward Rate Dynamics With Affine Realizations," Published Paper Series 2015-7, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    3. Alan Brace & Marek Musiela, 1994. "A Multifactor Gauss Markov Implementation Of Heath, Jarrow, And Morton," Mathematical Finance, Wiley Blackwell, vol. 4(3), pages 259-283, July.
    4. Rama Cont, 2005. "Modeling Term Structure Dynamics: An Infinite Dimensional Approach," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 8(03), pages 357-380.
    5. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305, World Scientific Publishing Co. Pte. Ltd..
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stefan Tappe, 2019. "Existence of affine realizations for stochastic partial differential equations driven by L\'evy processes," Papers 1907.00335, arXiv.org.
    2. Tappe, Stefan, 2016. "Affine realizations with affine state processes for stochastic partial differential equations," Stochastic Processes and their Applications, Elsevier, vol. 126(7), pages 2062-2091.
    3. David Criens, 2018. "Deterministic Criteria For The Absence And Existence Of Arbitrage In Multi-Dimensional Diffusion Markets," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(01), pages 1-41, February.
    4. Stefan Tappe, 2019. "Affine realizations with affine state processes for stochastic partial differential equations," Papers 1907.00336, arXiv.org.
    5. Özkan Fehmi & Schmidt Thorsten, 2005. "Credit risk with infinite dimensional Lévy processes," Statistics & Risk Modeling, De Gruyter, vol. 23(4), pages 281-299, April.
    6. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    7. João Nunes, 2011. "American options and callable bonds under stochastic interest rates and endogenous bankruptcy," Review of Derivatives Research, Springer, vol. 14(3), pages 283-332, October.
    8. Munk, Claus & Sorensen, Carsten, 2004. "Optimal consumption and investment strategies with stochastic interest rates," Journal of Banking & Finance, Elsevier, vol. 28(8), pages 1987-2013, August.
    9. Takashi Yasuoka, 2001. "Mathematical Pseudo-Completion Of The Bgm Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 4(03), pages 375-401.
    10. Chiarella, Carl & Clewlow, Les & Musti, Silvana, 2005. "A volatility decomposition control variate technique for Monte Carlo simulations of Heath Jarrow Morton models," European Journal of Operational Research, Elsevier, vol. 161(2), pages 325-336, March.
    11. Jury Falini, 2009. "Pricing caps with HJM models: the benefits of humped volatility," Department of Economics University of Siena 563, Department of Economics, University of Siena.
    12. Junwu Gan, 2014. "An almost Markovian LIBOR market model calibrated to caps and swaptions," Quantitative Finance, Taylor & Francis Journals, vol. 14(11), pages 1937-1959, November.
    13. Li, Haitao & Ye, Xiaoxia & Yu, Fan, 2020. "Unifying Gaussian dynamic term structure models from a Heath–Jarrow–Morton perspective," European Journal of Operational Research, Elsevier, vol. 286(3), pages 1153-1167.
    14. Giuseppe Arbia & Michele Di Marcantonio, 2015. "Forecasting Interest Rates Using Geostatistical Techniques," Econometrics, MDPI, vol. 3(4), pages 1-28, November.
    15. Camilla Landén & Tomas Björk, 2002. "On the construction of finite dimensional realizations for nonlinear forward rate models," Finance and Stochastics, Springer, vol. 6(3), pages 303-331.
    16. Flavio Angelini & Stefano Herzel, 2006. "Notes and Comments: An approximation of caplet implied volatilities in Gaussian models," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 28(2), pages 113-127, February.
    17. Santa-Clara, Pedro & Sornette, Didier, 2001. "The Dynamics of the Forward Interest Rate Curve with Stochastic String Shocks," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 149-185.
    18. Björk, Tomas & Landén, Camilla & Svensson, Lars, 2002. "Finite dimensional Markovian realizations for stochastic volatility forward rate models," SSE/EFI Working Paper Series in Economics and Finance 498, Stockholm School of Economics, revised 07 May 2002.
    19. Bueno-Guerrero, Alberto & Moreno, Manuel & Navas, Javier F., 2016. "The stochastic string model as a unifying theory of the term structure of interest rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 217-237.
    20. Carl Chiarella & Oh Kang Kwon, 2001. "Forward rate dependent Markovian transformations of the Heath-Jarrow-Morton term structure model," Finance and Stochastics, Springer, vol. 5(2), pages 237-257.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2205.00279. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.