IDEAS home Printed from https://ideas.repec.org/a/spr/decfin/v28y2006i2p113-127.html
   My bibliography  Save this article

Notes and Comments: An approximation of caplet implied volatilities in Gaussian models

Author

Listed:
  • Flavio Angelini
  • Stefano Herzel

Abstract

No abstract is available for this item.

Suggested Citation

  • Flavio Angelini & Stefano Herzel, 2006. "Notes and Comments: An approximation of caplet implied volatilities in Gaussian models," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 28(2), pages 113-127, February.
  • Handle: RePEc:spr:decfin:v:28:y:2006:i:2:p:113-127
    DOI: 10.1007/s10203-005-0056-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10203-005-0056-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10203-005-0056-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ho, Thomas S Y & Lee, Sang-bin, 1986. "Term Structure Movements and Pricing Interest Rate Contingent Claims," Journal of Finance, American Finance Association, vol. 41(5), pages 1011-1029, December.
    2. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    3. Mercurio, F. & Moraleda, J. M., 2000. "An analytically tractable interest rate model with humped volatility," European Journal of Operational Research, Elsevier, vol. 120(1), pages 205-214, January.
    4. Hull, John & White, Alan, 1990. "Pricing Interest-Rate-Derivative Securities," The Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 573-592.
    5. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305, World Scientific Publishing Co. Pte. Ltd..
    6. Flavio Angelini & Stefano Herzel, 2005. "Implied Volatilities of Caps: a Gaussian approach," Quaderni del Dipartimento di Economia, Finanza e Statistica 09/2005, Università di Perugia, Dipartimento Economia.
    7. Amin, Kaushik I. & Morton, Andrew J., 1994. "Implied volatility functions in arbitrage-free term structure models," Journal of Financial Economics, Elsevier, vol. 35(2), pages 141-180, April.
    8. Alan Brace & Marek Musiela, 1994. "A Multifactor Gauss Markov Implementation Of Heath, Jarrow, And Morton," Mathematical Finance, Wiley Blackwell, vol. 4(3), pages 259-283, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matthew Lorig & Natchanon Suaysom, 2022. "Explicit Caplet Implied Volatilities for Quadratic Term-Structure Models," Papers 2212.04425, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jury Falini, 2009. "Pricing caps with HJM models: the benefits of humped volatility," Department of Economics University of Siena 563, Department of Economics, University of Siena.
    2. Moreno, Manuel & Platania, Federico, 2015. "A cyclical square-root model for the term structure of interest rates," European Journal of Operational Research, Elsevier, vol. 241(1), pages 109-121.
    3. Falini, Jury, 2010. "Pricing caps with HJM models: The benefits of humped volatility," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1358-1367, December.
    4. Carl Chiarella & Xue-Zhong He & Christina Sklibosios Nikitopoulos, 2015. "Derivative Security Pricing," Dynamic Modeling and Econometrics in Economics and Finance, Springer, edition 127, number 978-3-662-45906-5, March.
    5. Robert R. Bliss & Ehud I. Ronn, 1997. "Callable U.S. Treasury bonds: optimal calls, anomalies, and implied volatilities," FRB Atlanta Working Paper 97-1, Federal Reserve Bank of Atlanta.
    6. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    7. Frank De Jong & Joost Driessen & Antoon Pelsser, 2001. "Libor Market Models versus Swap Market Models for Pricing Interest Rate Derivatives: An Empirical Analysis," Review of Finance, European Finance Association, vol. 5(3), pages 201-237.
    8. Chiarella, Carl & Clewlow, Les & Musti, Silvana, 2005. "A volatility decomposition control variate technique for Monte Carlo simulations of Heath Jarrow Morton models," European Journal of Operational Research, Elsevier, vol. 161(2), pages 325-336, March.
    9. Giuseppe Arbia & Michele Di Marcantonio, 2015. "Forecasting Interest Rates Using Geostatistical Techniques," Econometrics, MDPI, vol. 3(4), pages 1-28, November.
    10. Bueno-Guerrero, Alberto & Moreno, Manuel & Navas, Javier F., 2016. "The stochastic string model as a unifying theory of the term structure of interest rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 217-237.
    11. Juan M. Moraleda & Ton Vorst, 1996. "The Valuation of Interest Rate Derivatives: Empirical Evidence from the Spanish Market," Tinbergen Institute Discussion Papers 96-170/2, Tinbergen Institute.
    12. Massimo Costabile & Ivar Massabó & Emilio Russo, 2013. "A Path-Independent Humped Volatility Model for Option Pricing," Applied Mathematical Finance, Taylor & Francis Journals, vol. 20(3), pages 191-210, July.
    13. Ram Bhar & Carl Chiarella & Thuy-Duong To, 2004. "Estimating the Volatility Structure of an Arbitrage-Free Interest Rate Model Via the Futures Markets," Finance 0409003, University Library of Munich, Germany.
    14. Stoyan Valchev, 2004. "Stochastic volatility Gaussian Heath-Jarrow-Morton models," Applied Mathematical Finance, Taylor & Francis Journals, vol. 11(4), pages 347-368.
    15. I‐Doun Kuo & Kai‐Li Wang, 2009. "Implied deterministic volatility functions: An empirical test for Euribor options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 29(4), pages 319-347, April.
    16. Fabio Mercurio & Juan Moraleda, 2001. "A family of humped volatility models," The European Journal of Finance, Taylor & Francis Journals, vol. 7(2), pages 93-116.
    17. Driessen, Joost & Klaassen, Pieter & Melenberg, Bertrand, 2003. "The Performance of Multi-Factor Term Structure Models for Pricing and Hedging Caps and Swaptions," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 38(3), pages 635-672, September.
    18. Raj, Mahendra & Sim, Ah Boon & Thurston, David C., 1997. "A generalized method of moments comparison of the cox-ingersoll-ross and heath-jarrow-morton models," Journal of Economics and Business, Elsevier, vol. 49(2), pages 169-192.
    19. Pandher, Gurupdesh, 2007. "Arbitrage-free valuation of interest rate securities under forward curves with stochastic speed and acceleration," Journal of Economic Theory, Elsevier, vol. 137(1), pages 432-459, November.
    20. Kuo, I-Doun & Lin, Yueh-Neng, 2009. "Empirical performance of multifactor term structure models for pricing and hedging Eurodollar futures options," Review of Financial Economics, Elsevier, vol. 18(1), pages 23-32, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:decfin:v:28:y:2006:i:2:p:113-127. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.