An Efficient Approach for Optimizing the Cost-effective Individualized Treatment Rule Using Conditional Random Forest
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Yingqi Zhao & Donglin Zeng & A. John Rush & Michael R. Kosorok, 2012. "Estimating Individualized Treatment Rules Using Outcome Weighted Learning," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 1106-1118, September.
- E. B. Laber & Y. Q. Zhao, 2015. "Tree-based methods for individualized treatment regimes," Biometrika, Biometrika Trust, vol. 102(3), pages 501-514.
- Ben Kearns & John Stevens & Shijie Ren & Alan Brennan, 2020. "How Uncertain is the Survival Extrapolation? A Study of the Impact of Different Parametric Survival Models on Extrapolated Uncertainty About Hazard Functions, Lifetime Mean Survival and Cost Effective," PharmacoEconomics, Springer, vol. 38(2), pages 193-204, February.
- Jincheng Shen & Lu Wang & Jeremy M. G. Taylor, 2017. "Estimation of the optimal regime in treatment of prostate cancer recurrence from observational data using flexible weighting models," Biometrics, The International Biometric Society, vol. 73(2), pages 635-645, June.
- Theodoros Mantopoulos & Paul M. Mitchell & Nicky J. Welton & Richard McManus & Lazaros Andronis, 2016. "Choice of statistical model for cost-effectiveness analysis and covariate adjustment: empirical application of prominent models and assessment of their results," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 17(8), pages 927-938, November.
- Basak, Suryoday & Kar, Saibal & Saha, Snehanshu & Khaidem, Luckyson & Dey, Sudeepa Roy, 2019. "Predicting the direction of stock market prices using tree-based classifiers," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 552-567.
- Amal Malehi & Fatemeh Pourmotahari & Kambiz Angali, 2015. "Statistical models for the analysis of skewed healthcare cost data: a simulation study," Health Economics Review, Springer, vol. 5(1), pages 1-16, December.
- Charles E. Phelps, 1997. "Good Technologies Gone Bad," Medical Decision Making, , vol. 17(1), pages 107-117, February.
- Lu Tian & Ash A. Alizadeh & Andrew J. Gentles & Robert Tibshirani, 2014. "A Simple Method for Estimating Interactions Between a Treatment and a Large Number of Covariates," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(508), pages 1517-1532, December.
- Jingxiang Chen & Haoda Fu & Xuanyao He & Michael R. Kosorok & Yufeng Liu, 2018. "Estimating individualized treatment rules for ordinal treatments," Biometrics, The International Biometric Society, vol. 74(3), pages 924-933, September.
- Tommi Härkänen & Timo Maljanen & Olavi Lindfors & Esa Virtala & Paul Knekt, 2013. "Confounding and missing data in cost-effectiveness analysis: comparing different methods," Health Economics Review, Springer, vol. 3(1), pages 1-11, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yizhe Xu & Tom H. Greene & Adam P. Bress & Brian C. Sauer & Brandon K. Bellows & Yue Zhang & William S. Weintraub & Andrew E. Moran & Jincheng Shen, 2022. "Estimating the optimal individualized treatment rule from a cost‐effectiveness perspective," Biometrics, The International Biometric Society, vol. 78(1), pages 337-351, March.
- Weibin Mo & Yufeng Liu, 2022. "Efficient learning of optimal individualized treatment rules for heteroscedastic or misspecified treatment‐free effect models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 440-472, April.
- Emily L. Butler & Eric B. Laber & Sonia M. Davis & Michael R. Kosorok, 2018. "Incorporating Patient Preferences into Estimation of Optimal Individualized Treatment Rules," Biometrics, The International Biometric Society, vol. 74(1), pages 18-26, March.
- Hyung G. Park & Danni Wu & Eva Petkova & Thaddeus Tarpey & R. Todd Ogden, 2023. "Bayesian Index Models for Heterogeneous Treatment Effects on a Binary Outcome," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 15(2), pages 397-418, July.
- Zhen Li & Jie Chen & Eric Laber & Fang Liu & Richard Baumgartner, 2023. "Optimal Treatment Regimes: A Review and Empirical Comparison," International Statistical Review, International Statistical Institute, vol. 91(3), pages 427-463, December.
- Crystal T. Nguyen & Daniel J. Luckett & Anna R. Kahkoska & Grace E. Shearrer & Donna Spruijt‐Metz & Jaimie N. Davis & Michael R. Kosorok, 2020. "Estimating individualized treatment regimes from crossover designs," Biometrics, The International Biometric Society, vol. 76(3), pages 778-788, September.
- Ruoqing Zhu & Ying-Qi Zhao & Guanhua Chen & Shuangge Ma & Hongyu Zhao, 2017. "Greedy outcome weighted tree learning of optimal personalized treatment rules," Biometrics, The International Biometric Society, vol. 73(2), pages 391-400, June.
- Yumou Qiu & Jing Tao & Xiao‐Hua Zhou, 2021. "Inference of heterogeneous treatment effects using observational data with high‐dimensional covariates," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(5), pages 1016-1043, November.
- Peng Wu & Donglin Zeng & Haoda Fu & Yuanjia Wang, 2020. "On using electronic health records to improve optimal treatment rules in randomized trials," Biometrics, The International Biometric Society, vol. 76(4), pages 1075-1086, December.
- Engel, Christoph, 2020.
"Estimating heterogeneous reactions to experimental treatments,"
Journal of Economic Behavior & Organization, Elsevier, vol. 178(C), pages 124-147.
- Christoph Engel, 2019. "Estimating Heterogeneous Reactions to Experimental Treatments," Discussion Paper Series of the Max Planck Institute for Research on Collective Goods 2019_01, Max Planck Institute for Research on Collective Goods.
- Adam Ciarleglio & Eva Petkova & Todd Ogden & Thaddeus Tarpey, 2018. "Constructing treatment decision rules based on scalar and functional predictors when moderators of treatment effect are unknown," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1331-1356, November.
- Shuai Chen & Lu Tian & Tianxi Cai & Menggang Yu, 2017. "A general statistical framework for subgroup identification and comparative treatment scoring," Biometrics, The International Biometric Society, vol. 73(4), pages 1199-1209, December.
- Muxuan Liang & Menggang Yu, 2023. "Relative contrast estimation and inference for treatment recommendation," Biometrics, The International Biometric Society, vol. 79(4), pages 2920-2932, December.
- Baqun Zhang & Min Zhang, 2018. "C‐learning: A new classification framework to estimate optimal dynamic treatment regimes," Biometrics, The International Biometric Society, vol. 74(3), pages 891-899, September.
- Michael C. Knaus & Michael Lechner & Anthony Strittmatter, 2022.
"Heterogeneous Employment Effects of Job Search Programs: A Machine Learning Approach,"
Journal of Human Resources, University of Wisconsin Press, vol. 57(2), pages 597-636.
- Knaus, Michael C. & Lechner, Michael & Strittmatter, Anthony, 2017. "Heterogeneous Employment Effects of Job Search Programmes: A Machine Learning Approach," IZA Discussion Papers 10961, Institute of Labor Economics (IZA).
- Michael Knaus & Michael Lechner & Anthony Strittmatter, 2017. "Heterogeneous Employment Effects of Job Search Programmes: A Machine Learning Approach," Papers 1709.10279, arXiv.org, revised May 2018.
- Lechner, Michael & Strittmatter, Anthony & Knaus, Michael C., 2017. "Heterogeneous Employment Effects of Job Search Programmes: A Machine Learning Approach," CEPR Discussion Papers 12224, C.E.P.R. Discussion Papers.
- Knaus, Michael C. & Lechner, Michael & Strittmatter, Anthony, 2017. "Heterogeneous Employment Effects of Job Search Programmes: A Machine Learning Approach," Economics Working Paper Series 1711, University of St. Gallen, School of Economics and Political Science.
- Xinyang Huang & Jin Xu, 2020. "Estimating individualized treatment rules with risk constraint," Biometrics, The International Biometric Society, vol. 76(4), pages 1310-1318, December.
- Hongming Pu & Bo Zhang, 2021. "Estimating optimal treatment rules with an instrumental variable: A partial identification learning approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(2), pages 318-345, April.
- Ying Huang & Juhee Cho & Youyi Fong, 2021. "Threshold‐based subgroup testing in logistic regression models in two‐phase sampling designs," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(2), pages 291-311, March.
- Jiacheng Wu & Nina Galanter & Susan M. Shortreed & Erica E.M. Moodie, 2022. "Ranking tailoring variables for constructing individualized treatment rules: An application to schizophrenia," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(2), pages 309-330, March.
- Qian Guan & Eric B. Laber & Brian J. Reich, 2016. "Comment," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(515), pages 936-942, July.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-CMP-2022-05-23 (Computational Economics)
- NEP-HEA-2022-05-23 (Health Economics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2204.10971. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.