IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2204.05507.html
   My bibliography  Save this paper

Inducing Social Optimality in Games via Adaptive Incentive Design

Author

Listed:
  • Chinmay Maheshwari
  • Kshitij Kulkarni
  • Manxi Wu
  • Shankar Sastry

Abstract

How can a social planner adaptively incentivize selfish agents who are learning in a strategic environment to induce a socially optimal outcome in the long run? We propose a two-timescale learning dynamics to answer this question in both atomic and non-atomic games. In our learning dynamics, players adopt a class of learning rules to update their strategies at a faster timescale, while a social planner updates the incentive mechanism at a slower timescale. In particular, the update of the incentive mechanism is based on each player's externality, which is evaluated as the difference between the player's marginal cost and the society's marginal cost in each time step. We show that any fixed point of our learning dynamics corresponds to the optimal incentive mechanism such that the corresponding Nash equilibrium also achieves social optimality. We also provide sufficient conditions for the learning dynamics to converge to a fixed point so that the adaptive incentive mechanism eventually induces a socially optimal outcome. Finally, we demonstrate that the sufficient conditions for convergence are satisfied in a variety of games, including (i) atomic networked quadratic aggregative games, (ii) atomic Cournot competition, and (iii) non-atomic network routing games.

Suggested Citation

  • Chinmay Maheshwari & Kshitij Kulkarni & Manxi Wu & Shankar Sastry, 2022. "Inducing Social Optimality in Games via Adaptive Incentive Design," Papers 2204.05507, arXiv.org.
  • Handle: RePEc:arx:papers:2204.05507
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2204.05507
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Desmond Cai & Subhonmesh Bose & Adam Wierman, 2019. "On the Role of a Market Maker in Networked Cournot Competition," Mathematics of Operations Research, INFORMS, vol. 44(3), pages 1122-1144, August.
    2. Fudenberg, Drew & Levine, David, 1998. "Learning in games," European Economic Review, Elsevier, vol. 42(3-5), pages 631-639, May.
    3. Levin, Dan, 1985. "Taxation within Cournot oligopoly," Journal of Public Economics, Elsevier, vol. 27(3), pages 281-290, August.
    4. Varian, Hal R, 1994. "A Solution to the Problem of Externalities When Agents Are Well-Informed," American Economic Review, American Economic Association, vol. 84(5), pages 1278-1293, December.
    5. Jackson, Matthew O. & Zenou, Yves, 2015. "Games on Networks," Handbook of Game Theory with Economic Applications,, Elsevier.
    6. Otto A. Davis & Andrew Whinston, 1962. "Externalities, Welfare, and the Theory of Games," Journal of Political Economy, University of Chicago Press, vol. 70(3), pages 241-241.
    7. Drew Fudenberg & David K. Levine, 1998. "The Theory of Learning in Games," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262061945, April.
    8. Monderer, Dov & Shapley, Lloyd S., 1996. "Fictitious Play Property for Games with Identical Interests," Journal of Economic Theory, Elsevier, vol. 68(1), pages 258-265, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christian Ewerhart, 2020. "Ordinal potentials in smooth games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 70(4), pages 1069-1100, November.
    2. Benaïm, Michel & Hofbauer, Josef & Hopkins, Ed, 2009. "Learning in games with unstable equilibria," Journal of Economic Theory, Elsevier, vol. 144(4), pages 1694-1709, July.
    3. Bayer, Péter & Herings, P. Jean-Jacques & Peeters, Ronald, 2021. "Farsighted manipulation and exploitation in networks," Journal of Economic Theory, Elsevier, vol. 196(C).
    4. Macault, Emilien & Scarsini, Marco & Tomala, Tristan, 2022. "Social learning in nonatomic routing games," Games and Economic Behavior, Elsevier, vol. 132(C), pages 221-233.
    5. Hofbauer, Josef & Hopkins, Ed, 2005. "Learning in perturbed asymmetric games," Games and Economic Behavior, Elsevier, vol. 52(1), pages 133-152, July.
    6. Maskin, Eric & Sjostrom, Tomas, 2002. "Implementation theory," Handbook of Social Choice and Welfare, in: K. J. Arrow & A. K. Sen & K. Suzumura (ed.), Handbook of Social Choice and Welfare, edition 1, volume 1, chapter 5, pages 237-288, Elsevier.
    7. Ewerhart, Christian & Valkanova, Kremena, 2020. "Fictitious play in networks," Games and Economic Behavior, Elsevier, vol. 123(C), pages 182-206.
    8. In, Younghwan, 2014. "Fictitious play property of the Nash demand game," Economics Letters, Elsevier, vol. 122(3), pages 408-412.
    9. Leslie, David S. & Collins, E.J., 2006. "Generalised weakened fictitious play," Games and Economic Behavior, Elsevier, vol. 56(2), pages 285-298, August.
    10. Ding, Zhanwen & Wang, Qiao & Cai, Chaoying & Jiang, Shumin, 2014. "Fictitious play with incomplete learning," Mathematical Social Sciences, Elsevier, vol. 67(C), pages 1-8.
    11. Jacques Durieu & Philippe Solal, 2012. "Models of Adaptive Learning in Game Theory," Chapters, in: Richard Arena & Agnès Festré & Nathalie Lazaric (ed.), Handbook of Knowledge and Economics, chapter 11, Edward Elgar Publishing.
    12. Marden, Jason R. & Shamma, Jeff S., 2015. "Game Theory and Distributed Control****Supported AFOSR/MURI projects #FA9550-09-1-0538 and #FA9530-12-1-0359 and ONR projects #N00014-09-1-0751 and #N0014-12-1-0643," Handbook of Game Theory with Economic Applications,, Elsevier.
    13. Duffy, John & Hopkins, Ed, 2005. "Learning, information, and sorting in market entry games: theory and evidence," Games and Economic Behavior, Elsevier, vol. 51(1), pages 31-62, April.
    14. Swenson, Brian & Murray, Ryan & Kar, Soummya, 2020. "Regular potential games," Games and Economic Behavior, Elsevier, vol. 124(C), pages 432-453.
    15. Yan Chen & Robert Gazzale, 2004. "When Does Learning in Games Generate Convergence to Nash Equilibria? The Role of Supermodularity in an Experimental Setting," American Economic Review, American Economic Association, vol. 94(5), pages 1505-1535, December.
    16. Hofbauer,J. & Sandholm,W.H., 2001. "Evolution and learning in games with randomly disturbed payoffs," Working papers 5, Wisconsin Madison - Social Systems.
    17. Garcia, Alfredo & Reaume, Daniel & Smith, Robert L., 2000. "Fictitious play for finding system optimal routings in dynamic traffic networks," Transportation Research Part B: Methodological, Elsevier, vol. 34(2), pages 147-156, February.
    18. Ozan Candogan & Ishai Menache & Asuman Ozdaglar & Pablo A. Parrilo, 2011. "Flows and Decompositions of Games: Harmonic and Potential Games," Mathematics of Operations Research, INFORMS, vol. 36(3), pages 474-503, August.
    19. Willemien Kets, 2007. "The minority game: An economics perspective," Papers 0706.4432, arXiv.org.
    20. Hofbauer,J. & Sandholm,W.H., 2001. "Evolution and learning in games with randomly disturbed payoffs," Working papers 5, Wisconsin Madison - Social Systems.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2204.05507. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.