IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2203.06448.html
   My bibliography  Save this paper

Discrete, recurrent, and scalable patterns in human judgement underlie affective picture ratings

Author

Listed:
  • Emanuel A. Azcona
  • Byoung-Woo Kim
  • Nicole L. Vike
  • Sumra Bari
  • Shamal Lalvani
  • Leandros Stefanopoulos
  • Sean Woodward
  • Martin Block
  • Aggelos K. Katsaggelos
  • Hans C. Breiter

Abstract

Operant keypress tasks, where each action has a consequence, have been analogized to the construct of "wanting" and produce lawful relationships in humans that quantify preferences for approach and avoidance behavior. It is unknown if rating tasks without an operant framework, which can be analogized to "liking", show similar lawful relationships. We studied three independent cohorts of participants (N = 501, 506, and 4,019 participants) collected by two distinct organizations, using the same 7-point Likert scale to rate negative to positive preferences for pictures from the International Affective Picture Set. Picture ratings without an operant framework produced similar value functions, limit functions, and trade-off functions to those reported in the literature for operant keypress tasks, all with goodness of fits above 0.75. These value, limit, and trade-off functions were discrete in their mathematical formulation, recurrent across all three independent cohorts, and demonstrated scaling between individual and group curves. In all three experiments, the computation of loss aversion showed 95% confidence intervals below the value of 2, arguing against a strong overweighting of losses relative to gains, as has previously been reported for keypress tasks or games of chance with calibrated uncertainty. Graphed features from the three cohorts were similar and argue that preference assessments meet three of four criteria for lawfulness, providing a simple, short, and low-cost method for the quantitative assessment of preference without forced choice decisions, games of chance, or operant keypressing. This approach can easily be implemented on any digital device with a screen (e.g., cellphones).

Suggested Citation

  • Emanuel A. Azcona & Byoung-Woo Kim & Nicole L. Vike & Sumra Bari & Shamal Lalvani & Leandros Stefanopoulos & Sean Woodward & Martin Block & Aggelos K. Katsaggelos & Hans C. Breiter, 2022. "Discrete, recurrent, and scalable patterns in human judgement underlie affective picture ratings," Papers 2203.06448, arXiv.org.
  • Handle: RePEc:arx:papers:2203.06448
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2203.06448
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alexis Dinno, 2015. "Nonparametric pairwise multiple comparisons in independent groups using Dunn's test," Stata Journal, StataCorp LP, vol. 15(1), pages 292-300, March.
    2. Byoung Woo Kim & David N Kennedy & Joseph Lehár & Myung Joo Lee & Anne J Blood & Sang Lee & Roy H Perlis & Jordan W Smoller & Robert Morris & Maurizio Fava & Hans C Breiter & for the Phenotype Genotyp, 2010. "Recurrent, Robust and Scalable Patterns Underlie Human Approach and Avoidance," PLOS ONE, Public Library of Science, vol. 5(5), pages 1-25, May.
    3. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    4. Sang Lee & Myung J Lee & Byoung W Kim & Jodi M Gilman & John K Kuster & Anne J Blood & Camelia M Kuhnen & Hans C Breiter, 2015. "The Commonality of Loss Aversion across Procedures and Stimuli," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-10, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bradley, Ian, 2003. "The representative bettor, bet size, and prospect theory," Economics Letters, Elsevier, vol. 78(3), pages 409-413, March.
    2. Michael R. CARTER & Alain de JANVRY & Elisabeth SADOULET & Alexandros SARRIS, 2014. "Index-based weather insurance for developing countries: A review of evidence and a set of propositions for up-scaling," Working Papers P111, FERDI.
    3. Oliver Linton & Esfandiar Maasoumi & Yoon-Jae Wang, 2002. "Consistent testing for stochastic dominance: a subsampling approach," CeMMAP working papers 03/02, Institute for Fiscal Studies.
    4. van den Bergh, J.C.J.M. & Botzen, W.J.W., 2015. "Monetary valuation of the social cost of CO2 emissions: A critical survey," Ecological Economics, Elsevier, vol. 114(C), pages 33-46.
    5. Aurélien Baillon & Yoram Halevy & Chen Li, 2022. "Experimental elicitation of ambiguity attitude using the random incentive system," Experimental Economics, Springer;Economic Science Association, vol. 25(3), pages 1002-1023, June.
    6. Heiko Karle & Georg Kirchsteiger & Martin Peitz, 2015. "Loss Aversion and Consumption Choice: Theory and Experimental Evidence," American Economic Journal: Microeconomics, American Economic Association, vol. 7(2), pages 101-120, May.
    7. Berger, Loïc & Bleichrodt, Han & Eeckhoudt, Louis, 2013. "Treatment decisions under ambiguity," Journal of Health Economics, Elsevier, vol. 32(3), pages 559-569.
    8. Shoji, Isao & Kanehiro, Sumei, 2016. "Disposition effect as a behavioral trading activity elicited by investors' different risk preferences," International Review of Financial Analysis, Elsevier, vol. 46(C), pages 104-112.
    9. Muhammad Kashif & Thomas Leirvik, 2022. "The MAX Effect in an Oil Exporting Country: The Case of Norway," JRFM, MDPI, vol. 15(4), pages 1-16, March.
    10. Jonathan Meng & Feng Fu, 2020. "Understanding Gambling Behavior and Risk Attitudes Using Cryptocurrency-based Casino Blockchain Data," Papers 2008.05653, arXiv.org, revised Aug 2020.
    11. Daniel Fonseca Costa & Francisval Carvalho & Bruno César Moreira & José Willer Prado, 2017. "Bibliometric analysis on the association between behavioral finance and decision making with cognitive biases such as overconfidence, anchoring effect and confirmation bias," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 1775-1799, June.
    12. Robert Gazzale & Julian Jamison & Alexander Karlan & Dean Karlan, 2013. "Ambiguous Solicitation: Ambiguous Prescription," Economic Inquiry, Western Economic Association International, vol. 51(1), pages 1002-1011, January.
    13. Boone, Jan & Sadrieh, Abdolkarim & van Ours, Jan C., 2009. "Experiments on unemployment benefit sanctions and job search behavior," European Economic Review, Elsevier, vol. 53(8), pages 937-951, November.
    14. Castro, Luciano de & Galvao, Antonio F. & Kim, Jeong Yeol & Montes-Rojas, Gabriel & Olmo, Jose, 2022. "Experiments on portfolio selection: A comparison between quantile preferences and expected utility decision models," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 97(C).
    15. Jos'e Cl'audio do Nascimento, 2019. "Behavioral Biases and Nonadditive Dynamics in Risk Taking: An Experimental Investigation," Papers 1908.01709, arXiv.org, revised Apr 2023.
    16. Caporin, Massimiliano & Costola, Michele & Jannin, Gregory & Maillet, Bertrand, 2018. "“On the (Ab)use of Omega?”," Journal of Empirical Finance, Elsevier, vol. 46(C), pages 11-33.
    17. Luigi Guiso, 2015. "A Test of Narrow Framing and its Origin," Italian Economic Journal: A Continuation of Rivista Italiana degli Economisti and Giornale degli Economisti, Springer;Società Italiana degli Economisti (Italian Economic Association), vol. 1(1), pages 61-100, March.
    18. Brice Mayag & Michel Grabisch & Christophe Labreuche, 2009. "A characterization of the 2-additive Choquet integral through cardinal information," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00445132, HAL.
    19. Breaban, Adriana & van de Kuilen, Gijs & Noussair, Charles, 2016. "Prudence, Personality, Cognitive Ability and Emotional State," Other publications TiSEM 9a01a5ab-e03d-49eb-9cd7-4, Tilburg University, School of Economics and Management.
    20. Paolo Crosetto & Antonio Filippin, 2013. "The “bomb” risk elicitation task," Journal of Risk and Uncertainty, Springer, vol. 47(1), pages 31-65, August.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2203.06448. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.