IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2203.05603.html
   My bibliography  Save this paper

A persistent-homology-based turbulence index & some applications of TDA on financial markets

Author

Listed:
  • Miguel A. Ruiz-Ortiz
  • Jos'e Carlos G'omez-Larra~naga
  • Jes'us Rodr'iguez-Viorato

Abstract

Topological Data Analysis (TDA) is a modern approach to Data Analysis focusing on the topological features of data; it has been widely studied in recent years and used extensively in Biology, Physics, and many other areas. However, financial markets have been studied slightly through TDA. Here we present a quick review of some recent applications of TDA on financial markets, including applications in the early detection of turbulence periods in financial markets and how TDA can help to get new insights while investing. Also, we propose a new turbulence index based on persistent homology -- the fundamental tool for TDA -- that seems to capture critical transitions in financial data; we tested our index with different financial time series (S&P500, Russel 2000, S&P/BMV IPC and Nikkei 225) and crash events (Black Monday crash, dot-com crash, 2007-08 crash and COVID-19 crash). Furthermore, we include an introduction to persistent homology so the reader can understand this paper without knowing TDA.

Suggested Citation

  • Miguel A. Ruiz-Ortiz & Jos'e Carlos G'omez-Larra~naga & Jes'us Rodr'iguez-Viorato, 2022. "A persistent-homology-based turbulence index & some applications of TDA on financial markets," Papers 2203.05603, arXiv.org, revised Jul 2023.
  • Handle: RePEc:arx:papers:2203.05603
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2203.05603
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
    2. Gidea, Marian & Goldsmith, Daniel & Katz, Yuri & Roldan, Pablo & Shmalo, Yonah, 2020. "Topological recognition of critical transitions in time series of cryptocurrencies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 548(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abduraimova, Kumushoy, 2022. "Contagion and tail risk in complex financial networks," Journal of Banking & Finance, Elsevier, vol. 143(C).
    2. Farkas, Walter & Fringuellotti, Fulvia & Tunaru, Radu, 2020. "A cost-benefit analysis of capital requirements adjusted for model risk," Journal of Corporate Finance, Elsevier, vol. 65(C).
    3. Tobias Fissler & Yannick Hoga, 2024. "How to Compare Copula Forecasts?," Papers 2410.04165, arXiv.org.
    4. Masahiko Egami & Rusudan Kevkhishvili, 2020. "Time reversal and last passage time of diffusions with applications to credit risk management," Finance and Stochastics, Springer, vol. 24(3), pages 795-825, July.
    5. Avanzi, Benjamin & Taylor, Greg & Wong, Bernard & Yang, Xinda, 2021. "On the modelling of multivariate counts with Cox processes and dependent shot noise intensities," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 9-24.
    6. Leonardo Quero Virla, 2023. "An empirical characterization of volatility in the German stock market," SN Business & Economics, Springer, vol. 3(7), pages 1-19, July.
    7. Pfeifer Dietmar & Mändle Andreas & Ragulina Olena, 2017. "New copulas based on general partitions-of-unity and their applications to risk management (part II)," Dependence Modeling, De Gruyter, vol. 5(1), pages 246-255, October.
    8. Zdravko I. Botev & Robert Salomone & Daniel Mackinlay, 2019. "Fast and accurate computation of the distribution of sums of dependent log-normals," Annals of Operations Research, Springer, vol. 280(1), pages 19-46, September.
    9. Diba Daraei & Kristina Sendova, 2024. "Determining Safe Withdrawal Rates for Post-Retirement via a Ruin-Theory Approach," Risks, MDPI, vol. 12(4), pages 1-21, April.
    10. Makam, Vaishno Devi & Millossovich, Pietro & Tsanakas, Andreas, 2021. "Sensitivity analysis with χ2-divergences," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 372-383.
    11. Samuel Drapeau & Mekonnen Tadese, 2019. "Dual Representation of Expectile based Expected Shortfall and Its Properties," Papers 1911.03245, arXiv.org.
    12. Nevrla, Matěj, 2020. "Systemic risk in European financial and energy sectors: Dynamic factor copula approach," Economic Systems, Elsevier, vol. 44(4).
    13. H. Kaibuchi & Y. Kawasaki & G. Stupfler, 2022. "GARCH-UGH: a bias-reduced approach for dynamic extreme Value-at-Risk estimation in financial time series," Quantitative Finance, Taylor & Francis Journals, vol. 22(7), pages 1277-1294, July.
    14. Battulga Gankhuu, 2022. "Merton's Default Risk Model for Private Company," Papers 2208.01974, arXiv.org.
    15. Zhou, Wei & Moncaster, Alice & O'Neill, Eoghan & Reiner, David M. & Wang, Xinke & Guthrie, Peter, 2022. "Modelling future trends of annual embodied energy of urban residential building stock in China," Energy Policy, Elsevier, vol. 165(C).
    16. Saminger-Platz Susanne & Kolesárová Anna & Šeliga Adam & Mesiar Radko & Klement Erich Peter, 2024. "On comprehensive families of copulas involving the three basic copulas and transformations thereof," Dependence Modeling, De Gruyter, vol. 12(1), pages 1-36.
    17. Stephan Schlüter & Fabian Menz & Milena Kojić & Petar Mitić & Aida Hanić, 2022. "A Novel Approach to Generate Hourly Photovoltaic Power Scenarios," Sustainability, MDPI, vol. 14(8), pages 1-16, April.
    18. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    19. Borowska, Agnieszka & Hoogerheide, Lennart & Koopman, Siem Jan & van Dijk, Herman K., 2020. "Partially censored posterior for robust and efficient risk evaluation," Journal of Econometrics, Elsevier, vol. 217(2), pages 335-355.
    20. Dietmar Pfeifer & Olena Ragulina, 2018. "Generating VaR Scenarios under Solvency II with Product Beta Distributions," Risks, MDPI, vol. 6(4), pages 1-15, October.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2203.05603. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.