IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2202.07771.html
   My bibliography  Save this paper

An SMP-Based Algorithm for Solving the Constrained Utility Maximization Problem via Deep Learning

Author

Listed:
  • Kristof Wiedermann

Abstract

We consider the utility maximization problem under convex constraints with regard to theoretical results which allow the formulation of algorithmic solvers which make use of deep learning techniques. In particular for the case of random coefficients, we prove a stochastic maximum principle (SMP), which also holds for utility functions $U$ with $\mathrm{id}_{\mathbb{R}^{+}} \cdot U'$ being not necessarily nonincreasing, like the power utility functions, thereby generalizing the SMP proved by Li and Zheng (2018). We use this SMP together with the strong duality property for defining a new algorithm, which we call deep primal SMP algorithm. Numerical examples illustrate the effectiveness of the proposed algorithm - in particular for higher-dimensional problems and problems with random coefficients, which are either path dependent or satisfy their own SDEs. Moreover, our numerical experiments for constrained problems show that the novel deep primal SMP algorithm overcomes the deep SMP algorithm's (see Davey and Zheng (2021)) weakness of erroneously producing the value of the corresponding unconstrained problem. Furthermore, in contrast to the deep controlled 2BSDE algorithm from Davey and Zheng (2021), this algorithm is also applicable to problems with path dependent coefficients. As the deep primal SMP algorithm even yields the most accurate results in many of our studied problems, we can highly recommend its usage. Moreover, we propose a learning procedure based on epochs which improved the results of our algorithm even further. Implementing a semi-recurrent network architecture for the control process turned out to be also a valuable advancement.

Suggested Citation

  • Kristof Wiedermann, 2022. "An SMP-Based Algorithm for Solving the Constrained Utility Maximization Problem via Deep Learning," Papers 2202.07771, arXiv.org.
  • Handle: RePEc:arx:papers:2202.07771
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2202.07771
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Holger Kraft, 2005. "Optimal portfolios and Heston's stochastic volatility model: an explicit solution for power utility," Quantitative Finance, Taylor & Francis Journals, vol. 5(3), pages 303-313.
    2. Ma, Jingtang & Li, Wenyuan & Zheng, Harry, 2020. "Dual control Monte-Carlo method for tight bounds of value function under Heston stochastic volatility model," European Journal of Operational Research, Elsevier, vol. 280(2), pages 428-440.
    3. Ashley Davey & Harry Zheng, 2020. "Deep Learning for Constrained Utility Maximisation," Papers 2008.11757, arXiv.org, revised Aug 2021.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jingtang Ma & Zhengyang Lu & Zhenyu Cui, 2022. "Delta family approach for the stochastic control problems of utility maximization," Papers 2202.12745, arXiv.org.
    2. Kim Weston, 2016. "Stability of utility maximization in nonequivalent markets," Finance and Stochastics, Springer, vol. 20(2), pages 511-541, April.
    3. Escobar-Anel, Marcos & Gollart, Maximilian & Zagst, Rudi, 2022. "Closed-form portfolio optimization under GARCH models," Operations Research Perspectives, Elsevier, vol. 9(C).
    4. Chen, An & Nguyen, Thai & Stadje, Mitja, 2018. "Optimal investment under VaR-Regulation and Minimum Insurance," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 194-209.
    5. Jinzhu Li & Rong Wu, 2009. "Optimal investment problem with stochastic interest rate and stochastic volatility: Maximizing a power utility," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(3), pages 407-420, May.
    6. Branger, Nicole & Muck, Matthias & Seifried, Frank Thomas & Weisheit, Stefan, 2017. "Optimal portfolios when variances and covariances can jump," Journal of Economic Dynamics and Control, Elsevier, vol. 85(C), pages 59-89.
    7. Marcos Escobar-Anel & Vincent Höhn & Luis Seco & Rudi Zagst, 2018. "Optimal fee structures in hedge funds," Journal of Asset Management, Palgrave Macmillan, vol. 19(7), pages 522-542, December.
    8. Marcos Escobar-Anel & Michel Kschonnek & Rudi Zagst, 2022. "Portfolio optimization: not necessarily concave utility and constraints on wealth and allocation," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 95(1), pages 101-140, February.
    9. Kim, Jerim & Kim, Bara & Moon, Kyoung-Sook & Wee, In-Suk, 2012. "Valuation of power options under Heston's stochastic volatility model," Journal of Economic Dynamics and Control, Elsevier, vol. 36(11), pages 1796-1813.
    10. Yi, Bo & Li, Zhongfei & Viens, Frederi G. & Zeng, Yan, 2013. "Robust optimal control for an insurer with reinsurance and investment under Heston’s stochastic volatility model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 601-614.
    11. Kamma, Thijs & Pelsser, Antoon, 2022. "Near-optimal asset allocation in financial markets with trading constraints," European Journal of Operational Research, Elsevier, vol. 297(2), pages 766-781.
    12. Li, Zhongfei & Zeng, Yan & Lai, Yongzeng, 2012. "Optimal time-consistent investment and reinsurance strategies for insurers under Heston’s SV model," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 191-203.
    13. Larsen, Linda Sandris & Munk, Claus, 2012. "The costs of suboptimal dynamic asset allocation: General results and applications to interest rate risk, stock volatility risk, and growth/value tilts," Journal of Economic Dynamics and Control, Elsevier, vol. 36(2), pages 266-293.
    14. Zheng, Xiaoxiao & Zhou, Jieming & Sun, Zhongyang, 2016. "Robust optimal portfolio and proportional reinsurance for an insurer under a CEV model," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 77-87.
    15. Bingyan Han & Hoi Ying Wong, 2019. "Mean-variance portfolio selection under Volterra Heston model," Papers 1904.12442, arXiv.org, revised Jan 2020.
    16. Nicole Bauerle & Sascha Desmettre, 2018. "Portfolio Optimization in Fractional and Rough Heston Models," Papers 1809.10716, arXiv.org, revised May 2019.
    17. Weiping Wu & Yu Lin & Jianjun Gao & Ke Zhou, 2023. "Mean-variance hybrid portfolio optimization with quantile-based risk measure," Papers 2303.15830, arXiv.org, revised Apr 2023.
    18. An Chen & Thai Nguyen & Manuel Rach, 2021. "A collective investment problem in a stochastic volatility environment: The impact of sharing rules," Annals of Operations Research, Springer, vol. 302(1), pages 85-109, July.
    19. Kasper Larsen & Oleksii Mostovyi & Gordan v{Z}itkovi'c, 2014. "An expansion in the model space in the context of utility maximization," Papers 1410.0946, arXiv.org, revised Aug 2016.
    20. Oleksii Mostovyi & Mihai Sîrbu, 2019. "Sensitivity analysis of the utility maximisation problem with respect to model perturbations," Finance and Stochastics, Springer, vol. 23(3), pages 595-640, July.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2202.07771. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.