IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2112.14902.html
   My bibliography  Save this paper

Thirty Years of Academic Finance

Author

Listed:
  • David Ardia
  • Keven Bluteau
  • Mohammad Abbas Meghani

Abstract

We study how the financial literature has evolved in scale, research team composition, and article topicality across 32 finance-focused academic journals from 1992 to 2021. We document that the field has vastly expanded regarding outlets and published articles. Teams have become larger, and the proportion of women participating in research has increased significantly. Using the Structural Topic Model, we identify 45 topics discussed in the literature. We investigate the topic coverage of individual journals and can identify highly specialized and generalist outlets, but our analyses reveal that most journals have covered more topics over time, thus becoming more generalist. Finally, we find that articles with at least one woman author focus more on topics related to social and governance aspects of corporate finance. We also find that teams with at least one top-tier institution scholar tend to focus more on theoretical aspects of finance.

Suggested Citation

  • David Ardia & Keven Bluteau & Mohammad Abbas Meghani, 2021. "Thirty Years of Academic Finance," Papers 2112.14902, arXiv.org, revised Aug 2022.
  • Handle: RePEc:arx:papers:2112.14902
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2112.14902
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Corbet, Shaen & Dowling, Michael & Gao, Xiangyun & Huang, Shupei & Lucey, Brian & Vigne, Samuel A., 2019. "An analysis of the intellectual structure of research on the financial economics of precious metals," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    2. Baker, H. Kent & Kumar, Satish & Pattnaik, Debidutta, 2021. "Twenty-five years of the Journal of Corporate Finance: A scientometric analysis," Journal of Corporate Finance, Elsevier, vol. 66(C).
    3. Christos Alexakis & Michael Dowling & Konstantinos Eleftheriou & Michael Polemis, 2021. "Textual Machine Learning: An Application to Computational Economics Research," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 369-385, January.
    4. Grimmer, Justin & Stewart, Brandon M., 2013. "Text as Data: The Promise and Pitfalls of Automatic Content Analysis Methods for Political Texts," Political Analysis, Cambridge University Press, vol. 21(3), pages 267-297, July.
    5. Margaret Roberts & Brandon Stewart & Tingley, Dustin & Edoardo Airoldi, 2013. "The structural topic model and applied social science," Working Paper 132666, Harvard University OpenScholar.
    6. Juan Dolado & Florentino Felgueroso & Miguel Almunia, 2012. "Are men and women-economists evenly distributed across research fields? Some new empirical evidence," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 3(3), pages 367-393, September.
    7. Stephen Hansen & Michael McMahon & Andrea Prat, 2018. "Transparency and Deliberation Within the FOMC: A Computational Linguistics Approach," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 133(2), pages 801-870.
    8. J. Ignacio Conde-Ruiz & Juan José Ganuza & Manu Garcia & Luis A. Puch, 2021. "Gender distribution across topics in Top 5 economics journals: A machine learning approach," Economics Working Papers 1771, Department of Economics and Business, Universitat Pompeu Fabra.
    9. Bajo, Emanuele & Barbi, Massimiliano & Hillier, David, 2020. "Where should I publish to get promoted? A finance journal ranking based on business school promotions," Journal of Banking & Finance, Elsevier, vol. 114(C).
    10. Anusha Chari & Paul Goldsmith-Pinkham, 2017. "Gender Representation in Economics Across Topics and Time: Evidence from the NBER Summer Institute," NBER Working Papers 23953, National Bureau of Economic Research, Inc.
    11. Silvia Ferrari & Francisco Cribari-Neto, 2004. "Beta Regression for Modelling Rates and Proportions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 31(7), pages 799-815.
    12. Francesca De Battisti & Alfio Ferrara & Silvia Salini, 2015. "A decade of research in statistics: a topic model approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 103(2), pages 413-433, May.
    13. Angela Ambrosino & Mario Cedrini & John B. Davis & Stefano Fiori & Marco Guerzoni & Massimiliano Nuccio, 2018. "What topic modeling could reveal about the evolution of economics," Journal of Economic Methodology, Taylor & Francis Journals, vol. 25(4), pages 329-348, October.
    14. Berninger, M. & Kiesel, F. & Schiereck, D. & Gaar, E., 2021. "Citations and the readers’ information–extracting costs of finance articles," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 126616, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    15. Shawn Treier & Simon Jackman, 2008. "Democracy as a Latent Variable," American Journal of Political Science, John Wiley & Sons, vol. 52(1), pages 201-217, January.
    16. Margaret E. Roberts & Brandon M. Stewart & Dustin Tingley & Christopher Lucas & Jetson Leder‐Luis & Shana Kushner Gadarian & Bethany Albertson & David G. Rand, 2014. "Structural Topic Models for Open‐Ended Survey Responses," American Journal of Political Science, John Wiley & Sons, vol. 58(4), pages 1064-1082, October.
    17. Cribari-Neto, Francisco & Zeileis, Achim, 2010. "Beta Regression in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 34(i02).
    18. Berninger, Marc & Kiesel, Florian & Schiereck, Dirk & Gaar, Eduard, 2021. "Citations and the readers’ information-extracting costs of finance articles," Journal of Banking & Finance, Elsevier, vol. 131(C).
    19. Margaret E. Roberts & Brandon M. Stewart & Edoardo M. Airoldi, 2016. "A Model of Text for Experimentation in the Social Sciences," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(515), pages 988-1003, July.
    20. Mathias Wullum Nielsen & Jens Peter Andersen & Londa Schiebinger & Jesper W. Schneider, 2017. "One and a half million medical papers reveal a link between author gender and attention to gender and sex analysis," Nature Human Behaviour, Nature, vol. 1(11), pages 791-796, November.
    21. Rui Dai & Lawrence Donohue & Qingyi (Freda) Drechsler & Wei Jiang, 2023. "Dissemination, Publication, and Impact of Finance Research: When Novelty Meets Conventionality," Review of Finance, European Finance Association, vol. 27(1), pages 79-141.
    22. Grossmann, Axel & Lee, Allissa, 2022. "An analysis of finance journal accessibility: Author inclusivity and journal quality," Journal of Banking & Finance, Elsevier, vol. 138(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohamed M. Mostafa, 2023. "A one-hundred-year structural topic modeling analysis of the knowledge structure of international management research," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(4), pages 3905-3935, August.
    2. Szymon Sacher & Laura Battaglia & Stephen Hansen, 2021. "Hamiltonian Monte Carlo for Regression with High-Dimensional Categorical Data," Papers 2107.08112, arXiv.org, revised Feb 2024.
    3. Peter Grajzl & Peter Murrell, 2021. "Characterizing a legal–intellectual culture: Bacon, Coke, and seventeenth-century England," Cliometrica, Journal of Historical Economics and Econometric History, Association Française de Cliométrie (AFC), vol. 15(1), pages 43-88, January.
    4. Peter Grajzl & Cindy Irby, 2019. "Reflections on study abroad: a computational linguistics approach," Journal of Computational Social Science, Springer, vol. 2(2), pages 151-181, July.
    5. Edward Kerby & Alexander Moradi & Hanjo Odendaal, 2022. "African time travellers: what can we learn from 500 years of written accounts?," Oxford Economic and Social History Working Papers _201, University of Oxford, Department of Economics.
    6. J. Ignacio Conde-Ruiz & Juan-José Ganuza & Manu García & Luis A. Puch, 2022. "Gender distribution across topics in the top five economics journals: a machine learning approach," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 13(1), pages 269-308, May.
    7. Baker, H. Kent & Kumar, Satish & Goyal, Kirti & Sharma, Anuj, 2021. "International review of financial analysis: A retrospective evaluation between 1992 and 2020," International Review of Financial Analysis, Elsevier, vol. 78(C).
    8. Grajzl, Peter & Murrell, Peter, 2021. "A machine-learning history of English caselaw and legal ideas prior to the Industrial Revolution I: generating and interpreting the estimates," Journal of Institutional Economics, Cambridge University Press, vol. 17(1), pages 1-19, February.
    9. Dehler-Holland, Joris & Schumacher, Kira & Fichtner, Wolf, 2021. "Topic Modeling Uncovers Shifts in Media Framing of the German Renewable Energy Act," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 2(1).
    10. Marcel Fratzscher & Tobias Heidland & Lukas Menkhoff & Lucio Sarno & Maik Schmeling, 2023. "Foreign Exchange Intervention: A New Database," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 71(4), pages 852-884, December.
    11. Celso Brunetti & Marc Joëts & Valérie Mignon, 2023. "Reasons Behind Words: OPEC Narratives and the Oil Market," Working Papers 2023-19, CEPII research center.
    12. Ferrara, Federico M. & Masciandaro, Donato & Moschella, Manuela & Romelli, Davide, 2022. "Political voice on monetary policy: Evidence from the parliamentary hearings of the European Central Bank," European Journal of Political Economy, Elsevier, vol. 74(C).
    13. Camilla Salvatore & Silvia Biffignandi & Annamaria Bianchi, 2022. "Corporate Social Responsibility Activities Through Twitter: From Topic Model Analysis to Indexes Measuring Communication Characteristics," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 164(3), pages 1217-1248, December.
    14. J. Ignacio Conde-Ruiz & Juan-José Ganuza & Manu García & Luis A. Puch, 2021. "Gender Distribution across Topics in Top 5 Economics Journals: A Machine Learning Approach," Working Papers 1241, Barcelona School of Economics.
    15. Dehler-Holland, Joris & Okoh, Marvin & Keles, Dogan, 2022. "Assessing technology legitimacy with topic models and sentiment analysis – The case of wind power in Germany," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    16. Oliver Wieczorek & Saïd Unger & Jan Riebling & Lukas Erhard & Christian Koß & Raphael Heiberger, 2021. "Mapping the field of psychology: Trends in research topics 1995–2015," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(12), pages 9699-9731, December.
    17. Bongsug (Kevin) Chae & Eunhye (Olivia) Park, 2018. "Corporate Social Responsibility (CSR): A Survey of Topics and Trends Using Twitter Data and Topic Modeling," Sustainability, MDPI, vol. 10(7), pages 1-20, June.
    18. Nuccio Ludovico & Federica Dessi & Marino Bonaiuto, 2020. "Stakeholders Mapping for Sustainable Biofuels: An Innovative Procedure Based on Computational Text Analysis and Social Network Analysis," Sustainability, MDPI, vol. 12(24), pages 1-22, December.
    19. Savin, Ivan & Ott, Ingrid & Konop, Chris, 2022. "Tracing the evolution of service robotics: Insights from a topic modeling approach," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    20. Conde-Ruiz, J. Ignacio & Ganuza, Juan José & Profeta, Paola, 2022. "Statistical discrimination and committees," European Economic Review, Elsevier, vol. 141(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2112.14902. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.