IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2111.03995.html
   My bibliography  Save this paper

Explainable Deep Reinforcement Learning for Portfolio Management: An Empirical Approach

Author

Listed:
  • Mao Guan
  • Xiao-Yang Liu

Abstract

Deep reinforcement learning (DRL) has been widely studied in the portfolio management task. However, it is challenging to understand a DRL-based trading strategy because of the black-box nature of deep neural networks. In this paper, we propose an empirical approach to explain the strategies of DRL agents for the portfolio management task. First, we use a linear model in hindsight as the reference model, which finds the best portfolio weights by assuming knowing actual stock returns in foresight. In particular, we use the coefficients of a linear model in hindsight as the reference feature weights. Secondly, for DRL agents, we use integrated gradients to define the feature weights, which are the coefficients between reward and features under a linear regression model. Thirdly, we study the prediction power in two cases, single-step prediction and multi-step prediction. In particular, we quantify the prediction power by calculating the linear correlations between the feature weights of a DRL agent and the reference feature weights, and similarly for machine learning methods. Finally, we evaluate a portfolio management task on Dow Jones 30 constituent stocks during 01/01/2009 to 09/01/2021. Our approach empirically reveals that a DRL agent exhibits a stronger multi-step prediction power than machine learning methods.

Suggested Citation

  • Mao Guan & Xiao-Yang Liu, 2021. "Explainable Deep Reinforcement Learning for Portfolio Management: An Empirical Approach," Papers 2111.03995, arXiv.org, revised Dec 2021.
  • Handle: RePEc:arx:papers:2111.03995
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2111.03995
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiao-Yang Liu & Hongyang Yang & Jiechao Gao & Christina Dan Wang, 2021. "FinRL: Deep Reinforcement Learning Framework to Automate Trading in Quantitative Finance," Papers 2111.09395, arXiv.org.
    2. Eugene F. Fama & Kenneth R. French, 2004. "The Capital Asset Pricing Model: Theory and Evidence," Journal of Economic Perspectives, American Economic Association, vol. 18(3), pages 25-46, Summer.
    3. Shuo Sun & Rundong Wang & Bo An, 2021. "Reinforcement Learning for Quantitative Trading," Papers 2109.13851, arXiv.org.
    4. Zechu Li & Xiao-Yang Liu & Jiahao Zheng & Zhaoran Wang & Anwar Walid & Jian Guo, 2021. "FinRL-Podracer: High Performance and Scalable Deep Reinforcement Learning for Quantitative Finance," Papers 2111.05188, arXiv.org.
    5. Stephen Boyd & Enzo Busseti & Steven Diamond & Ronald N. Kahn & Kwangmoo Koh & Peter Nystrup & Jan Speth, 2017. "Multi-Period Trading via Convex Optimization," Papers 1705.00109, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuyang Wang & Diego Klabjan, 2023. "An Ensemble Method of Deep Reinforcement Learning for Automated Cryptocurrency Trading," Papers 2309.00626, arXiv.org.
    2. Xiao-Yang Liu & Hongyang Yang & Jiechao Gao & Christina Dan Wang, 2021. "FinRL: Deep Reinforcement Learning Framework to Automate Trading in Quantitative Finance," Papers 2111.09395, arXiv.org.
    3. Xiao-Yang Liu & Ziyi Xia & Jingyang Rui & Jiechao Gao & Hongyang Yang & Ming Zhu & Christina Dan Wang & Zhaoran Wang & Jian Guo, 2022. "FinRL-Meta: Market Environments and Benchmarks for Data-Driven Financial Reinforcement Learning," Papers 2211.03107, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao-Yang Liu & Jingyang Rui & Jiechao Gao & Liuqing Yang & Hongyang Yang & Zhaoran Wang & Christina Dan Wang & Jian Guo, 2021. "FinRL-Meta: A Universe of Near-Real Market Environments for Data-Driven Deep Reinforcement Learning in Quantitative Finance," Papers 2112.06753, arXiv.org, revised Mar 2022.
    2. Jinan Zou & Qingying Zhao & Yang Jiao & Haiyao Cao & Yanxi Liu & Qingsen Yan & Ehsan Abbasnejad & Lingqiao Liu & Javen Qinfeng Shi, 2022. "Stock Market Prediction via Deep Learning Techniques: A Survey," Papers 2212.12717, arXiv.org, revised Feb 2023.
    3. Zechu Li & Xiao-Yang Liu & Jiahao Zheng & Zhaoran Wang & Anwar Walid & Jian Guo, 2021. "FinRL-Podracer: High Performance and Scalable Deep Reinforcement Learning for Quantitative Finance," Papers 2111.05188, arXiv.org.
    4. David J. Moore & David McMillan, 2016. "A look at the actual cost of capital of US firms," Cogent Economics & Finance, Taylor & Francis Journals, vol. 4(1), pages 1233628-123, December.
    5. Todd D. Gerarden & Richard G. Newell & Robert N. Stavins, 2017. "Assessing the Energy-Efficiency Gap," Journal of Economic Literature, American Economic Association, vol. 55(4), pages 1486-1525, December.
    6. Albers, Christian & Lamprecht, Dirk, 2007. "Die Bewertung von Joint Ventures mit der Free Cash Flow-Methode unter besonderer Berücksichtigung kooperationsinterner Leistungsbeziehungen," Arbeitspapiere 65, University of Münster, Institute for Cooperatives.
    7. Xiang Lin & Martin Thomas Falk, 2022. "Nordic stock market performance of the travel and leisure industry during the first wave of Covid-19 pandemic," Tourism Economics, , vol. 28(5), pages 1240-1257, August.
    8. Mohamed Es-Sanoun & Jude Gohou & Mounir Benboubker, 2023. "Testing of Herd Behavior In african Stock Markets During COVID-19 Pandemic [Essai de vérification du comportement mimétique dans les marchés boursiers africains au cours de la crise de covid-19]," Post-Print hal-04144289, HAL.
    9. Turan G. Bali & Robert F. Engle & Yi Tang, 2017. "Dynamic Conditional Beta Is Alive and Well in the Cross Section of Daily Stock Returns," Management Science, INFORMS, vol. 63(11), pages 3760-3779, November.
    10. Jozef Baruník & Tobias Kley, 2019. "Quantile coherency: A general measure for dependence between cyclical economic variables," The Econometrics Journal, Royal Economic Society, vol. 22(2), pages 131-152.
    11. Veith, Stefan & Werner, Jörg R. & Zimmermann, Jochen, 2009. "Capital market response to emission rights returns: Evidence from the European power sector," Energy Economics, Elsevier, vol. 31(4), pages 605-613, July.
    12. Sulaiman, Junaid & Masih, Mansur, 2016. "Does interest rate impact the shariah index? Malaysian evidence based on ARDL approach," MPRA Paper 106145, University Library of Munich, Germany.
    13. Guesmi, Khaled & Nguyen, Duc Khuong, 2011. "How strong is the global integration of emerging market regions? An empirical assessment," Economic Modelling, Elsevier, vol. 28(6), pages 2517-2527.
    14. Stefan Lutz, 2012. "Effects of taxation on European multi-nationals’ financing and profits," Economics Discussion Paper Series 1214, Economics, The University of Manchester.
    15. Muhammad Ateeq ur REHMAN & Furman ALI & Shang XIE, 2022. "Impact of Foreign Investment News on the Return, Cost of Equity and Cash Flow Activities," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 112-127, December.
    16. C. Emre Alper & Oya Pinar Ardic & Salih Fendoglu, 2009. "The Economics Of The Uncovered Interest Parity Condition For Emerging Markets," Journal of Economic Surveys, Wiley Blackwell, vol. 23(1), pages 115-138, February.
    17. Hendershott, Terrence & Livdan, Dmitry & Rösch, Dominik, 2020. "Asset pricing: A tale of night and day," Journal of Financial Economics, Elsevier, vol. 138(3), pages 635-662.
    18. Mohammad Al-Afeef, 2017. "Capital Asset Pricing Model, Theory and Practice: Evidence from USA (2009-2016)," International Journal of Business and Management, Canadian Center of Science and Education, vol. 12(8), pages 182-182, July.
    19. Funk, Matt, 2008. "On the Problem of Sustainable Economic Development: A Theoretical Solution to this Prisoner's Dilemma," MPRA Paper 19025, University Library of Munich, Germany, revised 08 Jun 2008.
    20. Arouri, Mohamed El Hedi, 2011. "Does crude oil move stock markets in Europe? A sector investigation," Economic Modelling, Elsevier, vol. 28(4), pages 1716-1725, July.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2111.03995. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.