IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2111.14635.html
   My bibliography  Save this paper

A Resolution of St. Petersburg Paradox

Author

Listed:
  • V. I. Yukalov

Abstract

The St. Petersburg paradox is the oldest paradox in decision theory and has played a pivotal role in the introduction of increasing concave utility functions embodying risk aversion and decreasing marginal utility of gains. All attempts to resolve it have considered some variants of the original set-up, but the original paradox has remained unresolved, while the proposed variants have introduced new complications and problems. Here a rigorous mathematical resolution of the St. Petersburg paradox is suggested based on a probabilistic approach to decision theory.

Suggested Citation

  • V. I. Yukalov, 2021. "A Resolution of St. Petersburg Paradox," Papers 2111.14635, arXiv.org.
  • Handle: RePEc:arx:papers:2111.14635
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2111.14635
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Loomes, Graham & Moffatt, Peter G & Sugden, Robert, 2002. "A Microeconometric Test of Alternative Stochastic Theories of Risky Choice," Journal of Risk and Uncertainty, Springer, vol. 24(2), pages 103-130, March.
    2. Robert William, Vivian, 2013. "Ending the myth of the St Petersburg paradox," MPRA Paper 50515, University Library of Munich, Germany.
    3. Small, Kenneth A, 1987. "A Discrete Choice Model for Ordered Alternatives," Econometrica, Econometric Society, vol. 55(2), pages 409-424, March.
    4. John D. Hey & Chris Orme, 2018. "Investigating Generalizations Of Expected Utility Theory Using Experimental Data," World Scientific Book Chapters, in: Experiments in Economics Decision Making and Markets, chapter 3, pages 63-98, World Scientific Publishing Co. Pte. Ltd..
    5. Eike B. Kroll & Bodo Vogt, 2009. "The St. Petersburg Paradox despite risk-seeking preferences: An experimental study," FEMM Working Papers 09004, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    6. Faruk Gul & Paulo Natenzon & Wolfgang Pesendorfer, 2014. "Random Choice as Behavioral Optimization," Econometrica, Econometric Society, vol. 82, pages 1873-1912, September.
    7. Pavlo R. Blavatskyy, 2005. "Back to the St. Petersburg Paradox?," Management Science, INFORMS, vol. 51(4), pages 677-678, April.
    8. Blavatskyy, Pavlo R., 2006. "Violations of betweenness or random errors?," Economics Letters, Elsevier, vol. 91(1), pages 34-38, April.
    9. Carbone, E., 1997. "Investigation to Stochastic Preference Theory Using Exeprimental Data," University of East Anglia Discussion Papers in Economics 9701, School of Economics, University of East Anglia, Norwich, UK..
    10. Tibor Neugebauer, 2010. "Moral Impossibility in the Petersburg Paradox : A Literature Survey and Experimental Evidence," LSF Research Working Paper Series 10-14, Luxembourg School of Finance, University of Luxembourg.
    11. Aloysius, John A., 2003. "Rational escalation of costs by playing a sequence of unfavorable gambles: the martingale," Journal of Economic Behavior & Organization, Elsevier, vol. 51(1), pages 111-129, May.
    12. Carbone, Enrica, 1997. "Investigation of stochastic preference theory using experimental data," Economics Letters, Elsevier, vol. 57(3), pages 305-311, December.
    13. repec:cup:judgdm:v:4:y:2009:i:4:p:256-272 is not listed on IDEAS
    14. Ryan Webb, 2019. "The (Neural) Dynamics of Stochastic Choice," Management Science, INFORMS, vol. 65(1), pages 230-255, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yukalov, V.I., 2021. "A resolution of St. Petersburg paradox," Journal of Mathematical Economics, Elsevier, vol. 97(C).
    2. Pavlo Blavatskyy, 2018. "A Refinement of Logit Quantal Response Equilibrium," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 20(02), pages 1-14, June.
    3. Pavlo R. Blavatskyy, 2020. "Dual choice axiom and probabilistic choice," Journal of Risk and Uncertainty, Springer, vol. 61(1), pages 25-41, August.
    4. Ruggero Paladini, 2017. "Il paradosso di S. Pietroburgo, una rassegna," Public Finance Research Papers 29, Istituto di Economia e Finanza, DSGE, Sapienza University of Rome.
    5. Jakusch, Sven Thorsten & Meyer, Steffen & Hackethal, Andreas, 2019. "Taming models of prospect theory in the wild? Estimation of Vlcek and Hens (2011)," SAFE Working Paper Series 146, Leibniz Institute for Financial Research SAFE, revised 2019.
    6. Andreas C Drichoutis & Jayson L Lusk, 2014. "Judging Statistical Models of Individual Decision Making under Risk Using In- and Out-of-Sample Criteria," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-13, July.
    7. John D. Hey, 2018. "Why We Should Not Be Silent About Noise," World Scientific Book Chapters, in: Experiments in Economics Decision Making and Markets, chapter 13, pages 309-329, World Scientific Publishing Co. Pte. Ltd..
    8. Egil Matsen & Bjarne Strøm, 2006. "Joker: Choice in a simple game with large stakes," Working Paper Series 8307, Department of Economics, Norwegian University of Science and Technology.
    9. Aurora García-Gallego & Nikolaos Georgantzís & Daniel Navarro-Martínez & Gerardo Sabater-Grande, 2011. "The stochastic component in choice and regression to the mean," Theory and Decision, Springer, vol. 71(2), pages 251-267, August.
    10. Daniel Navarro-Martinez & Graham Loomes & Andrea Isoni & David Butler & Larbi Alaoui, 2018. "Boundedly rational expected utility theory," Journal of Risk and Uncertainty, Springer, vol. 57(3), pages 199-223, December.
    11. Henry Stott, 2006. "Cumulative prospect theory's functional menagerie," Journal of Risk and Uncertainty, Springer, vol. 32(2), pages 101-130, March.
    12. David M. Bruner, 2017. "Does decision error decrease with risk aversion?," Experimental Economics, Springer;Economic Science Association, vol. 20(1), pages 259-273, March.
    13. Glenn W. Harrison & John A. List, 2004. "Field Experiments," Journal of Economic Literature, American Economic Association, vol. 42(4), pages 1009-1055, December.
    14. Pavlo Blavatskyy, 2012. "Probabilistic choice and stochastic dominance," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 50(1), pages 59-83, May.
    15. Andre Palma & Moshe Ben-Akiva & David Brownstone & Charles Holt & Thierry Magnac & Daniel McFadden & Peter Moffatt & Nathalie Picard & Kenneth Train & Peter Wakker & Joan Walker, 2008. "Risk, uncertainty and discrete choice models," Marketing Letters, Springer, vol. 19(3), pages 269-285, December.
      • André de Palma & Moshe Ben-Akiva & David Brownstone & Charles Holt & Thierry Magnac & Daniel McFadden & Peter Moffatt & Nathalie Picard & Kenneth Train & Peter Wakker & Joan Walker, 2008. "Risk, Uncertainty and Discrete Choice Models," THEMA Working Papers 2008-02, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    16. David Bruner, 2009. "Changing the probability versus changing the reward," Experimental Economics, Springer;Economic Science Association, vol. 12(4), pages 367-385, December.
    17. Blavatskyy, Pavlo R., 2008. "Stochastic utility theorem," Journal of Mathematical Economics, Elsevier, vol. 44(11), pages 1049-1056, December.
    18. Wilcox, Nathaniel T., 2011. "'Stochastically more risk averse:' A contextual theory of stochastic discrete choice under risk," Journal of Econometrics, Elsevier, vol. 162(1), pages 89-104, May.
    19. John Hey & Andrea Morone & Ulrich Schmidt, 2009. "Noise and bias in eliciting preferences," Journal of Risk and Uncertainty, Springer, vol. 39(3), pages 213-235, December.
    20. Pavlo Blavatskyy, 2007. "Stochastic expected utility theory," Journal of Risk and Uncertainty, Springer, vol. 34(3), pages 259-286, June.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2111.14635. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.