IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2111.10784.html
   My bibliography  Save this paper

Why Synthetic Control estimators are biased and what to do about it: Introducing Relaxed and Penalized Synthetic Controls

Author

Listed:
  • Oscar Engelbrektson

Abstract

This paper extends the literature on the theoretical properties of synthetic controls to the case of non-linear generative models, showing that the synthetic control estimator is generally biased in such settings. I derive a lower bound for the bias, showing that the only component of it that is affected by the choice of synthetic control is the weighted sum of pairwise differences between the treated unit and the untreated units in the synthetic control. To address this bias, I propose a novel synthetic control estimator that allows for a constant difference of the synthetic control to the treated unit in the pre-treatment period, and that penalizes the pairwise discrepancies. Allowing for a constant offset makes the model more flexible, thus creating a larger set of potential synthetic controls, and the penalization term allows for the selection of the potential solution that will minimize bias. I study the properties of this estimator and propose a data-driven process for parameterizing the penalization term.

Suggested Citation

  • Oscar Engelbrektson, 2021. "Why Synthetic Control estimators are biased and what to do about it: Introducing Relaxed and Penalized Synthetic Controls," Papers 2111.10784, arXiv.org.
  • Handle: RePEc:arx:papers:2111.10784
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2111.10784
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dmitry Arkhangelsky & Susan Athey & David A. Hirshberg & Guido W. Imbens & Stefan Wager, 2021. "Synthetic Difference-in-Differences," American Economic Review, American Economic Association, vol. 111(12), pages 4088-4118, December.
    2. Susan Athey & Guido W. Imbens, 2017. "The State of Applied Econometrics: Causality and Policy Evaluation," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 3-32, Spring.
    3. Alberto Abadie & Alexis Diamond & Jens Hainmueller, 2015. "Comparative Politics and the Synthetic Control Method," American Journal of Political Science, John Wiley & Sons, vol. 59(2), pages 495-510, February.
    4. Alberto Abadie & Javier Gardeazabal, 2003. "The Economic Costs of Conflict: A Case Study of the Basque Country," American Economic Review, American Economic Association, vol. 93(1), pages 113-132, March.
    5. Abadie, Alberto & Diamond, Alexis & Hainmueller, Jens, 2010. "Synthetic Control Methods for Comparative Case Studies: Estimating the Effect of California’s Tobacco Control Program," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 493-505.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aniket Kesari, 2022. "Do data breach notification laws reduce medical identity theft? Evidence from consumer complaints data," Journal of Empirical Legal Studies, John Wiley & Sons, vol. 19(4), pages 1222-1252, December.
    2. Andrii Melnychuk, 2024. "Synthetic Controls with spillover effects: A comparative study," Papers 2405.01645, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dennis Shen & Peng Ding & Jasjeet Sekhon & Bin Yu, 2022. "Same Root Different Leaves: Time Series and Cross-Sectional Methods in Panel Data," Papers 2207.14481, arXiv.org, revised Oct 2022.
    2. Pekka Malo & Juha Eskelinen & Xun Zhou & Timo Kuosmanen, 2024. "Computing Synthetic Controls Using Bilevel Optimization," Computational Economics, Springer;Society for Computational Economics, vol. 64(2), pages 1113-1136, August.
    3. Stefano, Roberta di & Mellace, Giovanni, 2020. "The inclusive synthetic control method," Discussion Papers on Economics 14/2020, University of Southern Denmark, Department of Economics.
    4. David Gilchrist & Thomas Emery & Nuno Garoupa & Rok Spruk, 2023. "Synthetic Control Method: A tool for comparative case studies in economic history," Journal of Economic Surveys, Wiley Blackwell, vol. 37(2), pages 409-445, April.
    5. Roy Cerqueti & Raffaella Coppier & Alessandro Girardi & Marco Ventura, 2022. "The sooner the better: lives saved by the lockdown during the COVID-19 outbreak. The case of Italy," The Econometrics Journal, Royal Economic Society, vol. 25(1), pages 46-70.
    6. Parast Layla & Hunt Priscillia & Griffin Beth Ann & Powell David, 2020. "When is a Match Sufficient? A Score-based Balance Metric for the Synthetic Control Method," Journal of Causal Inference, De Gruyter, vol. 8(1), pages 209-228, January.
    7. Yi‐Ting Chen, 2020. "A distributional synthetic control method for policy evaluation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(5), pages 505-525, August.
    8. Campos, Nauro F. & Coricelli, Fabrizio & Franceschi, Emanuele, 2022. "Institutional integration and productivity growth: Evidence from the 1995 enlargement of the European Union," European Economic Review, Elsevier, vol. 142(C).
    9. He, Peiming & Zhang, Jiaming & Chen, Litai, 2022. "Time is money: Impact of China-Europe Railway Express on the export of laptop products from Chongqing to Europe," Transport Policy, Elsevier, vol. 125(C), pages 312-322.
    10. Echevarría, Cruz A. & Hasancebi, Serhat & García-Enríquez, Javier, 2022. "Economic Effects of Macao’s Integration with Mainland China: A Causal Inference Study," Journal of Economic Integration, Center for Economic Integration, Sejong University, vol. 37(2), pages 179-215.
    11. Bruno Ferman & Cristine Pinto & Vitor Possebom, 2020. "Cherry Picking with Synthetic Controls," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 39(2), pages 510-532, March.
    12. Manuel Funke & Moritz Schularick & Christoph Trebesch, 2023. "Populist Leaders and the Economy," American Economic Review, American Economic Association, vol. 113(12), pages 3249-3288, December.
    13. Bibek Adhikari & Romain Duval & Bingjie Hu & Prakash Loungani, 2018. "Can Reform Waves Turn the Tide? Some Case Studies using the Synthetic Control Method," Open Economies Review, Springer, vol. 29(4), pages 879-910, September.
    14. Sadeghi, Ali & Kibler, Ewald, 2022. "Do bankruptcy laws matter for entrepreneurship? A Synthetic Control Method analysis of a bankruptcy reform in Finland," Journal of Business Venturing Insights, Elsevier, vol. 18(C).
    15. Irene Botosaru & Bruno Ferman, 2019. "On the role of covariates in the synthetic control method," The Econometrics Journal, Royal Economic Society, vol. 22(2), pages 117-130.
    16. Camilla Beck Olsen & Hans Olav Melberg, 2018. "Did adolescents in Norway respond to the elimination of copayments for general practitioner services?," Health Economics, John Wiley & Sons, Ltd., vol. 27(7), pages 1120-1130, July.
    17. Pavlik, Jamie Bologna & Jahan, Israt & Young, Andrew T., 2023. "Do longer constitutions corrupt?," European Journal of Political Economy, Elsevier, vol. 77(C).
    18. Robert Messerle & Jonas Schreyögg, 2024. "Country-level effects of diagnosis-related groups: evidence from Germany’s comprehensive reform of hospital payments," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 25(6), pages 1013-1030, August.
    19. Samer Matta & Michael Bleaney & Simon Appleton, 2022. "The economic impact of political instability and mass civil protest," Economics and Politics, Wiley Blackwell, vol. 34(1), pages 253-270, March.
    20. Dennis Essers & Stefaan Ide, 2017. "The IMF and precautionary lending : An empirical evaluation of the selectivity and effectiveness of the flexible credit line," Working Paper Research 323, National Bank of Belgium.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2111.10784. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.