IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2110.03906.html
   My bibliography  Save this paper

Nash Convergence of Mean-Based Learning Algorithms in First Price Auctions

Author

Listed:
  • Xiaotie Deng
  • Xinyan Hu
  • Tao Lin
  • Weiqiang Zheng

Abstract

Understanding the convergence properties of learning dynamics in repeated auctions is a timely and important question in the area of learning in auctions, with numerous applications in, e.g., online advertising markets. This work focuses on repeated first price auctions where bidders with fixed values for the item learn to bid using mean-based algorithms -- a large class of online learning algorithms that include popular no-regret algorithms such as Multiplicative Weights Update and Follow the Perturbed Leader. We completely characterize the learning dynamics of mean-based algorithms, in terms of convergence to a Nash equilibrium of the auction, in two senses: (1) time-average: the fraction of rounds where bidders play a Nash equilibrium approaches 1 in the limit; (2)last-iterate: the mixed strategy profile of bidders approaches a Nash equilibrium in the limit. Specifically, the results depend on the number of bidders with the highest value: - If the number is at least three, the bidding dynamics almost surely converges to a Nash equilibrium of the auction, both in time-average and in last-iterate. - If the number is two, the bidding dynamics almost surely converges to a Nash equilibrium in time-average but not necessarily in last-iterate. - If the number is one, the bidding dynamics may not converge to a Nash equilibrium in time-average nor in last-iterate. Our discovery opens up new possibilities in the study of convergence dynamics of learning algorithms.

Suggested Citation

  • Xiaotie Deng & Xinyan Hu & Tao Lin & Weiqiang Zheng, 2021. "Nash Convergence of Mean-Based Learning Algorithms in First Price Auctions," Papers 2110.03906, arXiv.org, revised Feb 2023.
  • Handle: RePEc:arx:papers:2110.03906
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2110.03906
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fudenberg, Drew & Levine, David, 1998. "Learning in games," European Economic Review, Elsevier, vol. 42(3-5), pages 631-639, May.
    2. Bernard Lebrun, 1996. "Existence of an equilibrium in first price auctions (*)," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 7(3), pages 421-443.
    3. Eric Maskin & John Riley, 2000. "Equilibrium in Sealed High Bid Auctions," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 67(3), pages 439-454.
    4. Foster, Dean P. & Vohra, Rakesh V., 1997. "Calibrated Learning and Correlated Equilibrium," Games and Economic Behavior, Elsevier, vol. 21(1-2), pages 40-55, October.
    5. Hon-Snir, Shlomit & Monderer, Dov & Sela, Aner, 1998. "A Learning Approach to Auctions," Journal of Economic Theory, Elsevier, vol. 82(1), pages 65-88, September.
    6. Sergiu Hart & Andreu Mas-Colell, 2013. "A Simple Adaptive Procedure Leading To Correlated Equilibrium," World Scientific Book Chapters, in: Simple Adaptive Strategies From Regret-Matching to Uncoupled Dynamics, chapter 2, pages 17-46, World Scientific Publishing Co. Pte. Ltd..
    7. Lebrun, Bernard, 1999. "First Price Auctions in the Asymmetric N Bidder Case," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 40(1), pages 125-142, February.
    8. Xiaotie Deng & Ron Lavi & Tao Lin & Qi Qi & Wenwei Wang & Xiang Yan, 2020. "A Game-Theoretic Analysis of the Empirical Revenue Maximization Algorithm with Endogenous Sampling," Papers 2010.05519, arXiv.org.
    9. Krishnamurthy Iyer & Ramesh Johari & Mukund Sundararajan, 2014. "Mean Field Equilibria of Dynamic Auctions with Learning," Management Science, INFORMS, vol. 60(12), pages 2949-2970, December.
    10. repec:cup:cbooks:9781316779309 is not listed on IDEAS
    11. Roughgarden,Tim, 2016. "Twenty Lectures on Algorithmic Game Theory," Cambridge Books, Cambridge University Press, number 9781316624791.
    12. Drew Fudenberg & David K. Levine, 1998. "The Theory of Learning in Games," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262061945, April.
    13. Roughgarden,Tim, 2016. "Twenty Lectures on Algorithmic Game Theory," Cambridge Books, Cambridge University Press, number 9781107172661.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emerson Melo, 2021. "Learning in Random Utility Models Via Online Decision Problems," Papers 2112.10993, arXiv.org, revised Aug 2022.
    2. Tom Johnston & Michael Savery & Alex Scott & Bassel Tarbush, 2023. "Game Connectivity and Adaptive Dynamics," Papers 2309.10609, arXiv.org, revised Oct 2024.
    3. Emerson Melo, 2021. "Learning In Random Utility Models Via Online Decision Problems," CAEPR Working Papers 2022-003 Classification-D, Center for Applied Economics and Policy Research, Department of Economics, Indiana University Bloomington.
    4. Michael Foley & Rory Smead & Patrick Forber & Christoph Riedl, 2021. "Avoiding the bullies: The resilience of cooperation among unequals," PLOS Computational Biology, Public Library of Science, vol. 17(4), pages 1-18, April.
    5. Daron Acemoglu & Asuman Ozdaglar, 2011. "Opinion Dynamics and Learning in Social Networks," Dynamic Games and Applications, Springer, vol. 1(1), pages 3-49, March.
    6. Burkhard C. Schipper, 2022. "Strategic Teaching and Learning in Games," American Economic Journal: Microeconomics, American Economic Association, vol. 14(3), pages 321-352, August.
    7. Tim Roughgarden, 2018. "Complexity Theory, Game Theory, and Economics: The Barbados Lectures," Papers 1801.00734, arXiv.org, revised Feb 2020.
    8. Rene Saran & Roberto Serrano, 2012. "Regret Matching with Finite Memory," Dynamic Games and Applications, Springer, vol. 2(1), pages 160-175, March.
    9. Santiago R. Balseiro & Yonatan Gur, 2019. "Learning in Repeated Auctions with Budgets: Regret Minimization and Equilibrium," Management Science, INFORMS, vol. 65(9), pages 3952-3968, September.
    10. Michel Benaïm & Josef Hofbauer & Sylvain Sorin, 2006. "Stochastic Approximations and Differential Inclusions, Part II: Applications," Mathematics of Operations Research, INFORMS, vol. 31(4), pages 673-695, November.
    11. Vivaldo M. Mendes & Diana A. Mendes & Orlando Gomes, 2008. "Learning to Play Nash in Deterministic Uncoupled Dynamics," Working Papers Series 1 ercwp1808, ISCTE-IUL, Business Research Unit (BRU-IUL).
    12. Sergiu Hart & Yishay Mansour, 2013. "How Long To Equilibrium? The Communication Complexity Of Uncoupled Equilibrium Procedures," World Scientific Book Chapters, in: Simple Adaptive Strategies From Regret-Matching to Uncoupled Dynamics, chapter 10, pages 215-249, World Scientific Publishing Co. Pte. Ltd..
    13. Nakayama, Kazuaki & Nakamura, Ryuzo & Hisakado, Masato & Mori, Shintaro, 2020. "Optimal learning dynamics of multiagent system in restless multiarmed bandit game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    14. Ueda, Masahiko, 2023. "Memory-two strategies forming symmetric mutual reinforcement learning equilibrium in repeated prisoners’ dilemma game," Applied Mathematics and Computation, Elsevier, vol. 444(C).
    15. Eric Friedman & Scott Shenker & Amy Greenwald, 1998. "Learning in Networks Contexts: Experimental Results from Simulations," Departmental Working Papers 199825, Rutgers University, Department of Economics.
    16. Cabrales, Antonio & Serrano, Roberto, 2011. "Implementation in adaptive better-response dynamics: Towards a general theory of bounded rationality in mechanisms," Games and Economic Behavior, Elsevier, vol. 73(2), pages 360-374.
    17. Sergiu Hart & Yishay Mansour, 2006. "The Communication Complexity of Uncoupled Nash Equilibrium Procedures," Levine's Bibliography 122247000000001299, UCLA Department of Economics.
    18. Germano, Fabrizio & Lugosi, Gabor, 2007. "Global Nash convergence of Foster and Young's regret testing," Games and Economic Behavior, Elsevier, vol. 60(1), pages 135-154, July.
    19. Du, Ye & Lehrer, Ehud, 2020. "Constrained no-regret learning," Journal of Mathematical Economics, Elsevier, vol. 88(C), pages 16-24.
    20. Sergiu Hart & Andreu Mas-Colell, 2013. "A General Class Of Adaptive Strategies," World Scientific Book Chapters, in: Simple Adaptive Strategies From Regret-Matching to Uncoupled Dynamics, chapter 3, pages 47-76, World Scientific Publishing Co. Pte. Ltd..

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2110.03906. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.