IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2109.06378.html
   My bibliography  Save this paper

A consumption-investment model with state-dependent lower bound constraint on consumption

Author

Listed:
  • Chonghu Guan
  • Zuo Quan Xu
  • Fahuai Yi

Abstract

This paper studies a life-time consumption-investment problem under the Black-Scholes framework, where the consumption rate is subject to a lower bound constraint that linearly depends on her wealth. It is a stochastic control problem with state-dependent control constraint to which the standard stochastic control theory cannot be directly applied. We overcome this by transforming it into an equivalent stochastic control problem in which the control constraint is state-independent so that the standard theory can be applied. We give an explicit optimal consumption-investment strategy when the constraint is homogeneous. When the constraint is non-homogeneous, it is shown that the value function is third-order continuously differentiable by differential equation approach, and a feedback form optimal consumption-investment strategy is provided. According to our findings, if one is concerned with long-term more than short-term consumption, then she should always consume as few as possible; otherwise, she should consume optimally when her wealth is above a threshold, and consume as few as possible when her wealth is below the threshold.

Suggested Citation

  • Chonghu Guan & Zuo Quan Xu & Fahuai Yi, 2021. "A consumption-investment model with state-dependent lower bound constraint on consumption," Papers 2109.06378, arXiv.org, revised Dec 2021.
  • Handle: RePEc:arx:papers:2109.06378
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2109.06378
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Paul A. Samuelson, 2011. "Lifetime Portfolio Selection by Dynamic Stochastic Programming," World Scientific Book Chapters, in: Leonard C MacLean & Edward O Thorp & William T Ziemba (ed.), THE KELLY CAPITAL GROWTH INVESTMENT CRITERION THEORY and PRACTICE, chapter 31, pages 465-472, World Scientific Publishing Co. Pte. Ltd..
    2. Bardhan, Indrajit, 1994. "Consumption and investment under constraints," Journal of Economic Dynamics and Control, Elsevier, vol. 18(5), pages 909-929, September.
    3. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    4. Romuald Elie & Nizar Touzi, 2008. "Optimal lifetime consumption and investment under a drawdown constraint," Finance and Stochastics, Springer, vol. 12(3), pages 299-330, July.
    5. M. H. A. Davis & A. R. Norman, 1990. "Portfolio Selection with Transaction Costs," Mathematics of Operations Research, INFORMS, vol. 15(4), pages 676-713, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zuo Quan Xu & Fahuai Yi, 2014. "An Optimal Consumption-Investment Model with Constraint on Consumption," Papers 1404.7698, arXiv.org.
    2. Dokuchaev, Nikolai, 2010. "Optimality of myopic strategies for multi-stock discrete time market with management costs," European Journal of Operational Research, Elsevier, vol. 200(2), pages 551-556, January.
    3. Marcos Escobar-Anel & Michel Kschonnek & Rudi Zagst, 2022. "Portfolio optimization: not necessarily concave utility and constraints on wealth and allocation," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 95(1), pages 101-140, February.
    4. Davi Valladão & Thuener Silva & Marcus Poggi, 2019. "Time-consistent risk-constrained dynamic portfolio optimization with transactional costs and time-dependent returns," Annals of Operations Research, Springer, vol. 282(1), pages 379-405, November.
    5. Girlich, Hans-Joachim, 2003. "Transaction costs in finance and inventory research," International Journal of Production Economics, Elsevier, vol. 81(1), pages 341-350, January.
    6. Ma, Guiyuan & Siu, Chi Chung & Zhu, Song-Ping, 2019. "Dynamic portfolio choice with return predictability and transaction costs," European Journal of Operational Research, Elsevier, vol. 278(3), pages 976-988.
    7. Yao, Haixiang & Li, Danping & Wu, Huiling, 2022. "Dynamic trading with uncertain exit time and transaction costs in a general Markov market," International Review of Financial Analysis, Elsevier, vol. 84(C).
    8. Ankush Agarwal & Ronnie Sircar, 2017. "Portfolio Benchmarking under Drawdown Constraint and Stochastic Sharpe Ratio," Working Papers hal-01388399, HAL.
    9. Ruili Sun & Tiefeng Ma & Shuangzhe Liu & Milind Sathye, 2019. "Improved Covariance Matrix Estimation for Portfolio Risk Measurement: A Review," JRFM, MDPI, vol. 12(1), pages 1-34, March.
    10. Bin Zou & Rudi Zagst, 2015. "Optimal Investment with Transaction Costs under Cumulative Prospect Theory in Discrete Time," Papers 1511.04768, arXiv.org, revised Nov 2016.
    11. Nikolay A. Andreev, 2015. "Worst-Case Approach To Strategic Optimal Portfolio Selection Under Transaction Costs And Trading Limits," HSE Working papers WP BRP 45/FE/2015, National Research University Higher School of Economics.
    12. David B. Brown & James E. Smith, 2011. "Dynamic Portfolio Optimization with Transaction Costs: Heuristics and Dual Bounds," Management Science, INFORMS, vol. 57(10), pages 1752-1770, October.
    13. Nikolay Andreev, 2019. "Robust Portfolio Optimization in an Illiquid Market in Discrete-Time," Mathematics, MDPI, vol. 7(12), pages 1-16, November.
    14. Ankush Agarwal & Ronnie Sircar, 2016. "Portfolio Benchmarking under Drawdown Constraint and Stochastic Sharpe Ratio," Papers 1610.08558, arXiv.org.
    15. Rongju Zhang & Nicolas Langren'e & Yu Tian & Zili Zhu & Fima Klebaner & Kais Hamza, 2016. "Dynamic portfolio optimization with liquidity cost and market impact: a simulation-and-regression approach," Papers 1610.07694, arXiv.org, revised Jun 2019.
    16. Stephen G. Dimmock & Neng Wang & Jinqiang Yang, 2019. "The Endowment Model and Modern Portfolio Theory," NBER Working Papers 25559, National Bureau of Economic Research, Inc.
    17. Miguel, Víctor de & Nogales, Francisco J., 2013. "Multiperiod portfolio selection with transaction and market-impact costs," DES - Working Papers. Statistics and Econometrics. WS ws131615, Universidad Carlos III de Madrid. Departamento de Estadística.
    18. Mulvey, John M. & Rosenbaum, Daniel P. & Shetty, Bala, 1997. "Strategic financial risk management and operations research," European Journal of Operational Research, Elsevier, vol. 97(1), pages 1-16, February.
    19. Yuanyuan Zhang & Xiang Li & Sini Guo, 2018. "Portfolio selection problems with Markowitz’s mean–variance framework: a review of literature," Fuzzy Optimization and Decision Making, Springer, vol. 17(2), pages 125-158, June.
    20. Jean-Pierre Fouque & Ruimeng Hu, 2019. "Multiscale Asymptotic Analysis for Portfolio Optimization under Stochastic Environment," Papers 1902.06883, arXiv.org, revised Sep 2019.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2109.06378. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.