Implementing the BBE Agent-Based Model of a Sports-Betting Exchange
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2010. "Limit Order Books," Papers 1012.0349, arXiv.org, revised Apr 2013.
- Brown, Alasdair & Yang, Fuyu, 2016.
"Limited cognition and clustered asset prices: Evidence from betting markets,"
Journal of Financial Markets, Elsevier, vol. 29(C), pages 27-46.
- Alasdair Brown & Fuyu Yang, 2013. "Limited Cognition and Clustered Asset Prices: Evidence from Betting Markets," University of East Anglia Applied and Financial Economics Working Paper Series 054, School of Economics, University of East Anglia, Norwich, UK..
- Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2013. "Limit order books," Quantitative Finance, Taylor & Francis Journals, vol. 13(11), pages 1709-1742, November.
- Kanto, Antti J. & Rosenqvist, Gunnar & Suvas, Arto, 1992. "On utility function estimation of racetrack bettors," Journal of Economic Psychology, Elsevier, vol. 13(3), pages 491-498, September.
- Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
- Hubáček, Ondřej & Šourek, Gustav & Železný, Filip, 2019. "Exploiting sports-betting market using machine learning," International Journal of Forecasting, Elsevier, vol. 35(2), pages 783-796.
- Dave Cliff, 2021. "BBE: Simulating the Microstructural Dynamics of an In-Play Betting Exchange via Agent-Based Modelling," Papers 2105.08310, arXiv.org.
- Gustav Axén & Dominic Cortis, 2020. "Hedging on Betting Markets," Risks, MDPI, vol. 8(3), pages 1-14, August.
- Choi, Darwin & Hui, Sam K., 2014. "The role of surprise: Understanding overreaction and underreaction to unanticipated events using in-play soccer betting market," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PB), pages 614-629.
- Wheatcroft, Edward, 2020. "A profitable model for predicting the over/under market in football," International Journal of Forecasting, Elsevier, vol. 36(3), pages 916-932.
- de Jong,Frank & Rindi,Barbara, 2009.
"The Microstructure of Financial Markets,"
Cambridge Books,
Cambridge University Press, number 9780521687270, November.
- de Jong,Frank & Rindi,Barbara, 2009. "The Microstructure of Financial Markets," Cambridge Books, Cambridge University Press, number 9780521867849, November.
- Swidler, Steve & Shaw, Ron, 1995. "Racetrack wagering and the "uninformed" bettor: A study of market efficiency," The Quarterly Review of Economics and Finance, Elsevier, vol. 35(3), pages 305-314.
- Merz, Oliver & Flepp, Raphael & Franck, Egon, 2021.
"Sonic Thunder vs. Brian the Snail: Are people affected by uninformative racehorse names?,"
Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 93(C).
- Oliver Merz & Raphael Flepp & Egon Franck, 2020. "Sonic Thunder vs. Brian the Snail : Are people affected by uninformative racehorse names?," Working Papers 384, University of Zurich, Department of Business Administration (IBW).
- Restocchi, Valerio & McGroarty, Frank & Gerding, Enrico & Johnson, Johnnie E.V., 2018. "It takes all sorts: A heterogeneous agent explanation for prediction market mispricing," European Journal of Operational Research, Elsevier, vol. 270(2), pages 556-569.
- Michael Rollins & Dave Cliff, 2020. "Which Trading Agent is Best? Using a Threaded Parallel Simulation of a Financial Market Changes the Pecking-Order," Papers 2009.06905, arXiv.org.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Dave Cliff, 2021. "BBE: Simulating the Microstructural Dynamics of an In-Play Betting Exchange via Agent-Based Modelling," Papers 2105.08310, arXiv.org.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Dave Cliff, 2021. "BBE: Simulating the Microstructural Dynamics of an In-Play Betting Exchange via Agent-Based Modelling," Papers 2105.08310, arXiv.org.
- Philip W. S. Newall & Dominic Cortis, 2021. "Are Sports Bettors Biased toward Longshots, Favorites, or Both? A Literature Review," Risks, MDPI, vol. 9(1), pages 1-9, January.
- Raphael Flepp & Oliver Merz & Egon Franck, 2024. "When the league table lies: Does outcome bias lead to informationally inefficient markets?," Economic Inquiry, Western Economic Association International, vol. 62(1), pages 414-429, January.
- Martin Kukuk & Stefan Winter, 2008. "An Alternative Explanation of the Favorite-Longshot Bias," Journal of Gambling Business and Economics, University of Buckingham Press, vol. 2(2), pages 79-96, September.
- Peng Wu & Marcello Rambaldi & Jean-Franc{c}ois Muzy & Emmanuel Bacry, 2019. "Queue-reactive Hawkes models for the order flow," Papers 1901.08938, arXiv.org.
- Yamamoto, Ryuichi, 2019.
"Dynamic Predictor Selection And Order Splitting In A Limit Order Market,"
Macroeconomic Dynamics, Cambridge University Press, vol. 23(5), pages 1757-1792, July.
- Ryuichi Yamamoto, 2015. "Dynamic predictor selection and order splitting in a limit order market," Working Papers 1514, Waseda University, Faculty of Political Science and Economics.
- Ivan Jericevich & Patrick Chang & Tim Gebbie, 2021. "Simulation and estimation of a point-process market-model with a matching engine," Papers 2105.02211, arXiv.org, revised Aug 2021.
- Thomas Spooner & Rahul Savani, 2020. "Robust Market Making via Adversarial Reinforcement Learning," Papers 2003.01820, arXiv.org, revised Jul 2020.
- Alberto Ciacci & Takumi Sueshige & Hideki Takayasu & Kim Christensen & Misako Takayasu, 2020. "The microscopic relationships between triangular arbitrage and cross-currency correlations in a simple agent based model of foreign exchange markets," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-19, June.
- Jian Guo & Saizhuo Wang & Lionel M. Ni & Heung-Yeung Shum, 2022. "Quant 4.0: Engineering Quantitative Investment with Automated, Explainable and Knowledge-driven Artificial Intelligence," Papers 2301.04020, arXiv.org.
- James Wallbridge, 2020. "Transformers for Limit Order Books," Papers 2003.00130, arXiv.org.
- Johannes Bleher & Michael Bleher & Thomas Dimpfl, 2020. "From orders to prices: A stochastic description of the limit order book to forecast intraday returns," Papers 2004.11953, arXiv.org, revised May 2021.
- Zihao Zhang & Stefan Zohren & Stephen Roberts, 2018. "DeepLOB: Deep Convolutional Neural Networks for Limit Order Books," Papers 1808.03668, arXiv.org, revised Jan 2020.
- Tucker Hybinette Balch & Mahmoud Mahfouz & Joshua Lockhart & Maria Hybinette & David Byrd, 2019. "How to Evaluate Trading Strategies: Single Agent Market Replay or Multiple Agent Interactive Simulation?," Papers 1906.12010, arXiv.org.
- Johannes C. Müller & Sebastian Pokutta & Alexander Martin & Susanne Pape & Andrea Peter & Thomas Winter, 2017. "Pricing and clearing combinatorial markets with singleton and swap orders," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 85(2), pages 155-177, April.
- Hai-Chuan Xu & Wei Chen & Xiong Xiong & Wei Zhang & Wei-Xing Zhou & H Eugene Stanley, 2016. "Limit-order book resiliency after effective market orders: Spread, depth and intensity," Papers 1602.00731, arXiv.org, revised Feb 2017.
- Ranjan R. Chakravarty & Sudhanshu Pani, 2021. "A Data Paradigm to Operationalise Expanded Filtration: Realized Volatilities and Kernels from Non-Synchronous NASDAQ Quotes and Trades," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(4), pages 617-652, December.
- Ningyuan Chen & Steven Kou & Chun Wang, 2018. "A Partitioning Algorithm for Markov Decision Processes with Applications to Market Microstructure," Management Science, INFORMS, vol. 64(2), pages 784-803, February.
- Qing-Qing Yang & Wai-Ki Ching & Jiawen Gu & Tak-Kuen Siu, 2020.
"Trading strategy with stochastic volatility in a limit order book market,"
Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(1), pages 277-301, June.
- Wai-Ki Ching & Jia-Wen Gu & Tak-Kuen Siu & Qing-Qing Yang, 2016. "Trading Strategy with Stochastic Volatility in a Limit Order Book Market," Papers 1602.00358, arXiv.org.
- Gu, Gao-Feng & Xiong, Xiong & Zhang, Yong-Jie & Chen, Wei & Zhang, Wei & Zhou, Wei-Xing, 2016. "Stylized facts of price gaps in limit order books," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 48-58.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2021-08-09 (Big Data)
- NEP-CMP-2021-08-09 (Computational Economics)
- NEP-PAY-2021-08-09 (Payment Systems and Financial Technology)
- NEP-SPO-2021-08-09 (Sports and Economics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2108.02419. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.