IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2107.12885.html
   My bibliography  Save this paper

No free lunch for markets with multiple num\'eraires

Author

Listed:
  • Laurence Carassus

Abstract

We consider a global market constituted by several submarkets, each with its own assets and num\'eraire. We provide theoretical foundations for the existence of equivalent martingale measures and results on superreplication prices which allows to take into account difference of features between submarkets.

Suggested Citation

  • Laurence Carassus, 2021. "No free lunch for markets with multiple num\'eraires," Papers 2107.12885, arXiv.org, revised Dec 2022.
  • Handle: RePEc:arx:papers:2107.12885
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2107.12885
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Harrison, J. Michael & Kreps, David M., 1979. "Martingales and arbitrage in multiperiod securities markets," Journal of Economic Theory, Elsevier, vol. 20(3), pages 381-408, June.
    2. Kreps, David M., 1981. "Arbitrage and equilibrium in economies with infinitely many commodities," Journal of Mathematical Economics, Elsevier, vol. 8(1), pages 15-35, March.
    3. Christa Cuchiero & Claudio Fontana & Alessandro Gnoatto, 2016. "A general HJM framework for multiple yield curve modelling," Finance and Stochastics, Springer, vol. 20(2), pages 267-320, April.
    4. Hens, Thorsten & Jean-Jacques Herings, P. & Predtetchinskii, Arkadi, 2006. "Limits to arbitrage when market participation is restricted," Journal of Mathematical Economics, Elsevier, vol. 42(4-5), pages 556-564, August.
    5. Harrison, J. Michael & Pliska, Stanley R., 1981. "Martingales and stochastic integrals in the theory of continuous trading," Stochastic Processes and their Applications, Elsevier, vol. 11(3), pages 215-260, August.
    6. Claudio Fontana & Zorana Grbac & Sandrine Gümbel & Thorsten Schmidt, 2020. "Term structure modelling for multiple curves with stochastic discontinuities," Finance and Stochastics, Springer, vol. 24(2), pages 465-511, April.
    7. Bernard Bensaid & Jean‐Philippe Lesne & Henri Pagès & José Scheinkman, 1992. "Derivative Asset Pricing With Transaction Costs1," Mathematical Finance, Wiley Blackwell, vol. 2(2), pages 63-86, April.
    8. W. Schachermayer, 1994. "Martingale Measures For Discrete‐Time Processes With Infinite Horizon," Mathematical Finance, Wiley Blackwell, vol. 4(1), pages 25-55, January.
    9. Ioannis Karatzas & Constantinos Kardaras, 2007. "The numéraire portfolio in semimartingale financial models," Finance and Stochastics, Springer, vol. 11(4), pages 447-493, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carassus, Laurence, 2023. "No free lunch for markets with multiple numéraires," Journal of Mathematical Economics, Elsevier, vol. 104(C).
    2. repec:dau:papers:123456789/5374 is not listed on IDEAS
    3. Napp, Clotilde, 2001. "Pricing issues with investment flows Applications to market models with frictions," Journal of Mathematical Economics, Elsevier, vol. 35(3), pages 383-408, June.
    4. Koichiro Takaoka & Martin Schweizer, 2014. "A note on the condition of no unbounded profit with bounded risk," Finance and Stochastics, Springer, vol. 18(2), pages 393-405, April.
    5. Christa Cuchiero & Josef Teichmann, 2015. "A convergence result for the Emery topology and a variant of the proof of the fundamental theorem of asset pricing," Finance and Stochastics, Springer, vol. 19(4), pages 743-761, October.
    6. Hardy Hulley, 2009. "Strict Local Martingales in Continuous Financial Market Models," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 19, July-Dece.
    7. Laurence Carassus & Emmanuel L'epinette, 2021. "Pricing without no-arbitrage condition in discrete time," Papers 2104.02688, arXiv.org.
    8. Hardy Hulley, 2009. "Strict Local Martingales in Continuous Financial Market Models," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2-2009, January-A.
    9. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    10. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    11. Eckhard Platen & Stefan Tappe, 2020. "The Fundamental Theorem of Asset Pricing for Self-Financing Portfolios," Research Paper Series 411, Quantitative Finance Research Centre, University of Technology, Sydney.
    12. Jouini, Elyes & Kallal, Hedi & Napp, Clotilde, 2001. "Arbitrage and viability in securities markets with fixed trading costs," Journal of Mathematical Economics, Elsevier, vol. 35(2), pages 197-221, April.
    13. Jouini, Elyes, 2001. "Arbitrage and control problems in finance: A presentation," Journal of Mathematical Economics, Elsevier, vol. 35(2), pages 167-183, April.
    14. Eckhard Platen & Stefan Tappe, 2020. "No arbitrage and multiplicative special semimartingales," Papers 2005.05575, arXiv.org, revised Sep 2022.
    15. Tahir Choulli & Jun Deng & Junfeng Ma, 2015. "How non-arbitrage, viability and numéraire portfolio are related," Finance and Stochastics, Springer, vol. 19(4), pages 719-741, October.
    16. Stephen A. Clark, 2003. "An Infinite-Dimensional LP Duality Theorem," Mathematics of Operations Research, INFORMS, vol. 28(2), pages 233-245, May.
    17. M. Dempster & I. Evstigneev & M. Taksar, 2006. "Asset Pricing and Hedging in Financial Markets with Transaction Costs: An Approach Based on the Von Neumann–Gale Model," Annals of Finance, Springer, vol. 2(4), pages 327-355, October.
    18. repec:dau:papers:123456789/5593 is not listed on IDEAS
    19. David Criens, 2016. "Deterministic Criteria for the Absence and Existence of Arbitrage in Multi-Dimensional Diffusion Markets," Papers 1609.01621, arXiv.org, revised Dec 2017.
    20. Paolo Guasoni & Miklós Rásonyi & Walter Schachermayer, 2010. "The fundamental theorem of asset pricing for continuous processes under small transaction costs," Annals of Finance, Springer, vol. 6(2), pages 157-191, March.
    21. Paolo Guasoni & Emmanuel Lépinette & Miklós Rásonyi, 2012. "The fundamental theorem of asset pricing under transaction costs," Finance and Stochastics, Springer, vol. 16(4), pages 741-777, October.
    22. Loewenstein, Mark & Willard, Gregory A., 2000. "Rational Equilibrium Asset-Pricing Bubbles in Continuous Trading Models," Journal of Economic Theory, Elsevier, vol. 91(1), pages 17-58, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2107.12885. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.