IDEAS home Printed from https://ideas.repec.org/a/eee/mateco/v104y2023ics0304406822001318.html
   My bibliography  Save this article

No free lunch for markets with multiple numéraires

Author

Listed:
  • Carassus, Laurence

Abstract

We consider a new framework, that of a global market with a finite number of submarkets, where there is a tradable numéraire for each submarket, but no tradable numéraire for the global market. Under a global no arbitrage condition, we show the existence of a common density from which equivalent (local) martingale measures are constructed for each submarket. We also introduce several superreplication prices, depending on the chosen type of hedging: on the global market, on a given submarket or on all submarkets separably. We prove duality results on these prices that allow to assess differences in characteristics between the submarkets, such as liquidity or credit quality. The results are applied in concrete situations, in particular in a Brownian setup.

Suggested Citation

  • Carassus, Laurence, 2023. "No free lunch for markets with multiple numéraires," Journal of Mathematical Economics, Elsevier, vol. 104(C).
  • Handle: RePEc:eee:mateco:v:104:y:2023:i:c:s0304406822001318
    DOI: 10.1016/j.jmateco.2022.102805
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304406822001318
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmateco.2022.102805?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Claudio Fontana & Zorana Grbac & Sandrine Gümbel & Thorsten Schmidt, 2020. "Term structure modelling for multiple curves with stochastic discontinuities," Post-Print hal-03898927, HAL.
    2. Claudio Fontana & Zorana Grbac & Sandrine Gümbel & Thorsten Schmidt, 2020. "Term structure modelling for multiple curves with stochastic discontinuities," Finance and Stochastics, Springer, vol. 24(2), pages 465-511, April.
    3. W. Schachermayer, 1994. "Martingale Measures For Discrete‐Time Processes With Infinite Horizon," Mathematical Finance, Wiley Blackwell, vol. 4(1), pages 25-55, January.
    4. Christa Cuchiero & Claudio Fontana & Alessandro Gnoatto, 2016. "A general HJM framework for multiple yield curve modelling," Finance and Stochastics, Springer, vol. 20(2), pages 267-320, April.
    5. Harrison, J. Michael & Pliska, Stanley R., 1981. "Martingales and stochastic integrals in the theory of continuous trading," Stochastic Processes and their Applications, Elsevier, vol. 11(3), pages 215-260, August.
    6. Hens, Thorsten & Jean-Jacques Herings, P. & Predtetchinskii, Arkadi, 2006. "Limits to arbitrage when market participation is restricted," Journal of Mathematical Economics, Elsevier, vol. 42(4-5), pages 556-564, August.
    7. Bernard Bensaid & Jean‐Philippe Lesne & Henri Pagès & José Scheinkman, 1992. "Derivative Asset Pricing With Transaction Costs1," Mathematical Finance, Wiley Blackwell, vol. 2(2), pages 63-86, April.
    8. J. Michael Harrison & Stanley R. Pliska, 1981. "Martingales and Stochastic Integrals in the Theory of Continous Trading," Discussion Papers 454, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    9. Kreps, David M., 1981. "Arbitrage and equilibrium in economies with infinitely many commodities," Journal of Mathematical Economics, Elsevier, vol. 8(1), pages 15-35, March.
    10. Ioannis Karatzas & Constantinos Kardaras, 2007. "The numéraire portfolio in semimartingale financial models," Finance and Stochastics, Springer, vol. 11(4), pages 447-493, October.
    11. Harrison, J. Michael & Kreps, David M., 1979. "Martingales and arbitrage in multiperiod securities markets," Journal of Economic Theory, Elsevier, vol. 20(3), pages 381-408, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laurence Carassus, 2021. "No free lunch for markets with multiple num\'eraires," Papers 2107.12885, arXiv.org, revised Dec 2022.
    2. repec:dau:papers:123456789/5374 is not listed on IDEAS
    3. Hardy Hulley, 2009. "Strict Local Martingales in Continuous Financial Market Models," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 19, July-Dece.
    4. Hardy Hulley, 2009. "Strict Local Martingales in Continuous Financial Market Models," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2-2009, January-A.
    5. Eckhard Platen & Stefan Tappe, 2020. "The Fundamental Theorem of Asset Pricing for Self-Financing Portfolios," Research Paper Series 411, Quantitative Finance Research Centre, University of Technology, Sydney.
    6. Napp, Clotilde, 2001. "Pricing issues with investment flows Applications to market models with frictions," Journal of Mathematical Economics, Elsevier, vol. 35(3), pages 383-408, June.
    7. Eckhard Platen & Stefan Tappe, 2020. "No arbitrage and multiplicative special semimartingales," Papers 2005.05575, arXiv.org, revised Sep 2022.
    8. Koichiro Takaoka & Martin Schweizer, 2014. "A note on the condition of no unbounded profit with bounded risk," Finance and Stochastics, Springer, vol. 18(2), pages 393-405, April.
    9. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    10. Christa Cuchiero & Josef Teichmann, 2015. "A convergence result for the Emery topology and a variant of the proof of the fundamental theorem of asset pricing," Finance and Stochastics, Springer, vol. 19(4), pages 743-761, October.
    11. Romain Blanchard & Laurence Carassus, 2021. "Convergence of utility indifference prices to the superreplication price in a multiple‐priors framework," Mathematical Finance, Wiley Blackwell, vol. 31(1), pages 366-398, January.
    12. Laurence Carassus & Emmanuel L'epinette, 2021. "Pricing without no-arbitrage condition in discrete time," Papers 2104.02688, arXiv.org.
    13. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    14. Jovanovic, Franck & Schinckus, Christophe, 2016. "Breaking down the barriers between econophysics and financial economics," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 256-266.
    15. N. Azevedo & D. Pinheiro & S. Z. Xanthopoulos & A. N. Yannacopoulos, 2018. "Who would invest only in the risk-free asset?," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(03), pages 1-14, September.
    16. W. Schachermayer, 1994. "Martingale Measures For Discrete‐Time Processes With Infinite Horizon," Mathematical Finance, Wiley Blackwell, vol. 4(1), pages 25-55, January.
    17. Claudio Fontana, 2015. "Weak And Strong No-Arbitrage Conditions For Continuous Financial Markets," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(01), pages 1-34.
    18. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    19. Beatrice Acciaio & Julio Backhoff & Gudmund Pammer, 2022. "Quantitative Fundamental Theorem of Asset Pricing," Papers 2209.15037, arXiv.org, revised Jan 2024.
    20. Jouini, Elyes & Kallal, Hedi & Napp, Clotilde, 2001. "Arbitrage and viability in securities markets with fixed trading costs," Journal of Mathematical Economics, Elsevier, vol. 35(2), pages 197-221, April.
    21. Fontana, Claudio & Runggaldier, Wolfgang J., 2021. "Arbitrage concepts under trading restrictions in discrete-time financial markets," Journal of Mathematical Economics, Elsevier, vol. 92(C), pages 66-80.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:mateco:v:104:y:2023:i:c:s0304406822001318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jmateco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.