IDEAS home Printed from https://ideas.repec.org/a/spr/finsto/v16y2012i4p741-777.html
   My bibliography  Save this article

The fundamental theorem of asset pricing under transaction costs

Author

Listed:
  • Paolo Guasoni
  • Emmanuel Lépinette
  • Miklós Rásonyi

Abstract

This paper proves the fundamental theorem of asset pricing with transaction costs, when bid and ask prices follow locally bounded càdlàg (right-continuous, left-limited) processes. The robust no free lunch with vanishing risk condition (RNFLVR) for simple strategies is equivalent to the existence of a strictly consistent price system (SCPS). This result relies on a new notion of admissibility, which reflects future liquidation opportunities. The RNFLVR condition implies that admissible strategies are predictable processes of finite variation. The Appendix develops an extension of the familiar Stieltjes integral for càdlàg integrands and finite-variation integrators, which is central to modelling transaction costs with discontinuous prices. Copyright Springer-Verlag 2012

Suggested Citation

  • Paolo Guasoni & Emmanuel Lépinette & Miklós Rásonyi, 2012. "The fundamental theorem of asset pricing under transaction costs," Finance and Stochastics, Springer, vol. 16(4), pages 741-777, October.
  • Handle: RePEc:spr:finsto:v:16:y:2012:i:4:p:741-777
    DOI: 10.1007/s00780-012-0185-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00780-012-0185-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00780-012-0185-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. repec:dau:papers:123456789/5630 is not listed on IDEAS
    2. repec:crs:wpaper:9513 is not listed on IDEAS
    3. Jouini Elyes & Kallal Hedi, 1995. "Martingales and Arbitrage in Securities Markets with Transaction Costs," Journal of Economic Theory, Elsevier, vol. 66(1), pages 178-197, June.
    4. Luciano Campi & Walter Schachermayer, 2006. "A super-replication theorem in Kabanov’s model of transaction costs," Finance and Stochastics, Springer, vol. 10(4), pages 579-596, December.
    5. Harrison, J. Michael & Kreps, David M., 1979. "Martingales and arbitrage in multiperiod securities markets," Journal of Economic Theory, Elsevier, vol. 20(3), pages 381-408, June.
    6. Kreps, David M., 1981. "Arbitrage and equilibrium in economies with infinitely many commodities," Journal of Mathematical Economics, Elsevier, vol. 8(1), pages 15-35, March.
    7. Harrison, J. Michael & Pliska, Stanley R., 1981. "Martingales and stochastic integrals in the theory of continuous trading," Stochastic Processes and their Applications, Elsevier, vol. 11(3), pages 215-260, August.
    8. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    9. (**), Christophe Stricker & (*), Miklós Rásonyi & Yuri Kabanov, 2002. "No-arbitrage criteria for financial markets with efficient friction," Finance and Stochastics, Springer, vol. 6(3), pages 371-382.
    10. W. Schachermayer, 1994. "Martingale Measures For Discrete‐Time Processes With Infinite Horizon," Mathematical Finance, Wiley Blackwell, vol. 4(1), pages 25-55, January.
    11. repec:dau:papers:123456789/5455 is not listed on IDEAS
    12. Paolo Guasoni & Miklós Rásonyi & Walter Schachermayer, 2010. "The fundamental theorem of asset pricing for continuous processes under small transaction costs," Annals of Finance, Springer, vol. 6(2), pages 157-191, March.
    13. Walter Schachermayer, 2004. "The Fundamental Theorem of Asset Pricing under Proportional Transaction Costs in Finite Discrete Time," Mathematical Finance, Wiley Blackwell, vol. 14(1), pages 19-48, January.
    14. Kabanov, Yu. M. & Stricker, Ch., 2001. "The Harrison-Pliska arbitrage pricing theorem under transaction costs," Journal of Mathematical Economics, Elsevier, vol. 35(2), pages 185-196, April.
    15. Y.M. Kabanov, 1999. "Hedging and liquidation under transaction costs in currency markets," Finance and Stochastics, Springer, vol. 3(2), pages 237-248.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paolo Guasoni & Miklós Rásonyi & Walter Schachermayer, 2010. "The fundamental theorem of asset pricing for continuous processes under small transaction costs," Annals of Finance, Springer, vol. 6(2), pages 157-191, March.
    2. Jouini, Elyes, 2001. "Arbitrage and control problems in finance: A presentation," Journal of Mathematical Economics, Elsevier, vol. 35(2), pages 167-183, April.
    3. repec:dau:papers:123456789/5590 is not listed on IDEAS
    4. Irene Klein & Emmanuel Lépinette & Lavinia Perez-Ostafe, 2014. "Asymptotic arbitrage with small transaction costs," Finance and Stochastics, Springer, vol. 18(4), pages 917-939, October.
    5. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    6. repec:dau:papers:123456789/5374 is not listed on IDEAS
    7. Napp, Clotilde, 2001. "Pricing issues with investment flows Applications to market models with frictions," Journal of Mathematical Economics, Elsevier, vol. 35(3), pages 383-408, June.
    8. Teemu Pennanen & Ari-Pekka Perkkio, 2016. "Convex duality in optimal investment and contingent claim valuation in illiquid markets," Papers 1603.02867, arXiv.org.
    9. M. Dempster & I. Evstigneev & M. Taksar, 2006. "Asset Pricing and Hedging in Financial Markets with Transaction Costs: An Approach Based on the Von Neumann–Gale Model," Annals of Finance, Springer, vol. 2(4), pages 327-355, October.
    10. Matteo Burzoni, 2015. "Arbitrage and Hedging in model-independent markets with frictions," Papers 1512.01488, arXiv.org, revised Aug 2016.
    11. Walter Schachermayer, 2014. "The super-replication theorem under proportional transaction costs revisited," Papers 1405.1266, arXiv.org.
    12. Teemu Pennanen & Ari-Pekka Perkkiö, 2018. "Convex duality in optimal investment and contingent claim valuation in illiquid markets," Finance and Stochastics, Springer, vol. 22(4), pages 733-771, October.
    13. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    14. Kaval, K. & Molchanov, I., 2006. "Link-save trading," Journal of Mathematical Economics, Elsevier, vol. 42(6), pages 710-728, September.
    15. Martin Brown & Tomasz Zastawniak, 2020. "Fundamental Theorem of Asset Pricing under fixed and proportional transaction costs," Annals of Finance, Springer, vol. 16(3), pages 423-433, September.
    16. Gianluca Cassese, 2017. "Asset pricing in an imperfect world," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 64(3), pages 539-570, October.
    17. Beißner, Patrick, 2013. "Coherent Price Systems and Uncertainty-Neutral Valuation," VfS Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 80010, Verein für Socialpolitik / German Economic Association.
    18. Jouini, Elyes & Kallal, Hedi & Napp, Clotilde, 2001. "Arbitrage and viability in securities markets with fixed trading costs," Journal of Mathematical Economics, Elsevier, vol. 35(2), pages 197-221, April.
    19. Roux, Alet, 2011. "The fundamental theorem of asset pricing in the presence of bid-ask and interest rate spreads," Journal of Mathematical Economics, Elsevier, vol. 47(2), pages 159-163, March.
    20. Tahir Choulli & Jun Deng & Junfeng Ma, 2015. "How non-arbitrage, viability and numéraire portfolio are related," Finance and Stochastics, Springer, vol. 19(4), pages 719-741, October.
    21. Alet Roux, 2007. "The fundamental theorem of asset pricing under proportional transaction costs," Papers 0710.2758, arXiv.org.
    22. Dmitry B. Rokhlin, 2006. "Constructive no-arbitrage criterion under transaction costs in the case of finite discrete time," Papers math/0603284, arXiv.org.

    More about this item

    Keywords

    Arbitrage; Fundamental theorem of asset pricing; Transaction costs; Admissible strategies; Finite variation; 91B28; 62P05; 26A45; 60H05; G12;
    All these keywords.

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:finsto:v:16:y:2012:i:4:p:741-777. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.