IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2106.03417.html
   My bibliography  Save this paper

Dynamic Portfolio Cuts: A Spectral Approach to Graph-Theoretic Diversification

Author

Listed:
  • Alvaro Arroyo
  • Bruno Scalzo
  • Ljubisa Stankovic
  • Danilo P. Mandic

Abstract

Stock market returns are typically analyzed using standard regression, yet they reside on irregular domains which is a natural scenario for graph signal processing. To this end, we consider a market graph as an intuitive way to represent the relationships between financial assets. Traditional methods for estimating asset-return covariance operate under the assumption of statistical time-invariance, and are thus unable to appropriately infer the underlying true structure of the market graph. This work introduces a class of graph spectral estimators which cater for the nonstationarity inherent to asset price movements, and serve as a basis to represent the time-varying interactions between assets through a dynamic spectral market graph. Such an account of the time-varying nature of the asset-return covariance allows us to introduce the notion of dynamic spectral portfolio cuts, whereby the graph is partitioned into time-evolving clusters, allowing for online and robust asset allocation. The advantages of the proposed framework over traditional methods are demonstrated through numerical case studies using real-world price data.

Suggested Citation

  • Alvaro Arroyo & Bruno Scalzo & Ljubisa Stankovic & Danilo P. Mandic, 2021. "Dynamic Portfolio Cuts: A Spectral Approach to Graph-Theoretic Diversification," Papers 2106.03417, arXiv.org.
  • Handle: RePEc:arx:papers:2106.03417
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2106.03417
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    2. Guharay, Samar K. & Thakur, Gaurav S. & Goodman, Fred J. & Rosen, Scott L. & Houser, Daniel, 2013. "Analysis of non-stationary dynamics in the financial system," Economics Letters, Elsevier, vol. 121(3), pages 454-457.
    3. Jos'e Vin'icius de Miranda Cardoso & Jiaxi Ying & Daniel Perez Palomar, 2020. "Algorithms for Learning Graphs in Financial Markets," Papers 2012.15410, arXiv.org.
    4. Bruno Scalzo & Alvaro Arroyo & Ljubisa Stankovic & Danilo P. Mandic, 2021. "Nonstationary Portfolios: Diversification in the Spectral Domain," Papers 2102.00477, arXiv.org.
    5. Calkin, Neil J. & López de Prado, Marcos, 2014. "Stochastic flow diagrams," Algorithmic Finance, IOS Press, vol. 3(1-2), pages 21-42.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Ray-Bing & Chen, Ying & Härdle, Wolfgang K., 2014. "TVICA—Time varying independent component analysis and its application to financial data," Computational Statistics & Data Analysis, Elsevier, vol. 74(C), pages 95-109.
    2. Abduraimova, Kumushoy, 2022. "Contagion and tail risk in complex financial networks," Journal of Banking & Finance, Elsevier, vol. 143(C).
    3. Josselin Garnier & Knut Sølna, 2018. "Option pricing under fast-varying and rough stochastic volatility," Annals of Finance, Springer, vol. 14(4), pages 489-516, November.
    4. Jean-Philippe Bouchaud & Julien Kockelkoren & Marc Potters, 2006. "Random walks, liquidity molasses and critical response in financial markets," Quantitative Finance, Taylor & Francis Journals, vol. 6(2), pages 115-123.
    5. Juan C. Henao-Londono & Sebastian M. Krause & Thomas Guhr, 2021. "Price response functions and spread impact in correlated financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(4), pages 1-20, April.
    6. Westerhoff, Frank H. & Dieci, Roberto, 2006. "The effectiveness of Keynes-Tobin transaction taxes when heterogeneous agents can trade in different markets: A behavioral finance approach," Journal of Economic Dynamics and Control, Elsevier, vol. 30(2), pages 293-322, February.
    7. Aït-Youcef, Camille & Joëts, Marc, 2024. "The role of index traders in the financialization of commodity markets: A behavioral finance approach," Energy Economics, Elsevier, vol. 136(C).
    8. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Working Papers hal-02946146, HAL.
    9. Zhang, Wei-Guo & Li, Zhe & Liu, Yong-Jun, 2018. "Analytical pricing of geometric Asian power options on an underlying driven by a mixed fractional Brownian motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 402-418.
    10. Giovanni Bonaccolto & Massimiliano Caporin & Sandra Paterlini, 2018. "Asset allocation strategies based on penalized quantile regression," Computational Management Science, Springer, vol. 15(1), pages 1-32, January.
    11. Hoga, Yannick, 2017. "Monitoring multivariate time series," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 105-121.
    12. Lallouache, Mehdi & Abergel, Frédéric, 2014. "Tick size reduction and price clustering in a FX order book," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 488-498.
    13. Nathan Lassance & Victor DeMiguel & Frédéric Vrins, 2022. "Optimal Portfolio Diversification via Independent Component Analysis," Operations Research, INFORMS, vol. 70(1), pages 55-72, January.
    14. Muchnik, Lev & Bunde, Armin & Havlin, Shlomo, 2009. "Long term memory in extreme returns of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(19), pages 4145-4150.
    15. BenSaïda, Ahmed & Slim, Skander, 2016. "Highly flexible distributions to fit multiple frequency financial returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 203-213.
    16. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Finance and Stochastics, Springer, vol. 26(4), pages 733-769, October.
    17. Damian Jelito & Marcin Pitera, 2018. "New fat-tail normality test based on conditional second moments with applications to finance," Papers 1811.05464, arXiv.org, revised Apr 2020.
    18. Liusha Yang & Romain Couillet & Matthew R. McKay, 2015. "A Robust Statistics Approach to Minimum Variance Portfolio Optimization," Papers 1503.08013, arXiv.org.
    19. Chen, Zhimin & Ibragimov, Rustam, 2019. "One country, two systems? The heavy-tailedness of Chinese A- and H- share markets," Emerging Markets Review, Elsevier, vol. 38(C), pages 115-141.
    20. Zou, Yongjie & Li, Honggang, 2014. "Time spans between price maxima and price minima in stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 303-309.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2106.03417. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.