IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2106.03007.html
   My bibliography  Save this paper

Truthful Self-Play

Author

Listed:
  • Shohei Ohsawa

Abstract

We present a general framework for evolutionary learning to emergent unbiased state representation without any supervision. Evolutionary frameworks such as self-play converge to bad local optima in case of multi-agent reinforcement learning in non-cooperative partially observable environments with communication due to information asymmetry. Our proposed framework is a simple modification of self-play inspired by mechanism design, also known as {\em reverse game theory}, to elicit truthful signals and make the agents cooperative. The key idea is to add imaginary rewards using the peer prediction method, i.e., a mechanism for evaluating the validity of information exchanged between agents in a decentralized environment. Numerical experiments with predator prey, traffic junction and StarCraft tasks demonstrate that the state-of-the-art performance of our framework.

Suggested Citation

  • Shohei Ohsawa, 2021. "Truthful Self-Play," Papers 2106.03007, arXiv.org, revised Feb 2023.
  • Handle: RePEc:arx:papers:2106.03007
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2106.03007
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Myerson, Roger B, 1983. "Mechanism Design by an Informed Principal," Econometrica, Econometric Society, vol. 51(6), pages 1767-1797, November.
    2. Nolan Miller & Paul Resnick & Richard Zeckhauser, 2005. "Eliciting Informative Feedback: The Peer-Prediction Method," Management Science, INFORMS, vol. 51(9), pages 1359-1373, September.
    3. William Vickrey, 1961. "Counterspeculation, Auctions, And Competitive Sealed Tenders," Journal of Finance, American Finance Association, vol. 16(1), pages 8-37, March.
    4. David Silver & Julian Schrittwieser & Karen Simonyan & Ioannis Antonoglou & Aja Huang & Arthur Guez & Thomas Hubert & Lucas Baker & Matthew Lai & Adrian Bolton & Yutian Chen & Timothy Lillicrap & Fan , 2017. "Mastering the game of Go without human knowledge," Nature, Nature, vol. 550(7676), pages 354-359, October.
    5. Volodymyr Mnih & Koray Kavukcuoglu & David Silver & Andrei A. Rusu & Joel Veness & Marc G. Bellemare & Alex Graves & Martin Riedmiller & Andreas K. Fidjeland & Georg Ostrovski & Stig Petersen & Charle, 2015. "Human-level control through deep reinforcement learning," Nature, Nature, vol. 518(7540), pages 529-533, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Omar Al-Ani & Sanjoy Das, 2022. "Reinforcement Learning: Theory and Applications in HEMS," Energies, MDPI, vol. 15(17), pages 1-37, September.
    2. Boute, Robert N. & Gijsbrechts, Joren & van Jaarsveld, Willem & Vanvuchelen, Nathalie, 2022. "Deep reinforcement learning for inventory control: A roadmap," European Journal of Operational Research, Elsevier, vol. 298(2), pages 401-412.
    3. Niklas Klarnskou & Philippos Louis & Wouter Passtoors, 2024. "Feedback and Competition in Procurement e-Auctions," University of Cyprus Working Papers in Economics 04-2024, University of Cyprus Department of Economics.
    4. Zhang, Yihao & Chai, Zhaojie & Lykotrafitis, George, 2021. "Deep reinforcement learning with a particle dynamics environment applied to emergency evacuation of a room with obstacles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    5. Yang, Kaiyuan & Huang, Houjing & Vandans, Olafs & Murali, Adithya & Tian, Fujia & Yap, Roland H.C. & Dai, Liang, 2023. "Applying deep reinforcement learning to the HP model for protein structure prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    6. Weifan Long & Taixian Hou & Xiaoyi Wei & Shichao Yan & Peng Zhai & Lihua Zhang, 2023. "A Survey on Population-Based Deep Reinforcement Learning," Mathematics, MDPI, vol. 11(10), pages 1-17, May.
    7. Yifeng Guo & Xingyu Fu & Yuyan Shi & Mingwen Liu, 2018. "Robust Log-Optimal Strategy with Reinforcement Learning," Papers 1805.00205, arXiv.org.
    8. Touzani, Samir & Prakash, Anand Krishnan & Wang, Zhe & Agarwal, Shreya & Pritoni, Marco & Kiran, Mariam & Brown, Richard & Granderson, Jessica, 2021. "Controlling distributed energy resources via deep reinforcement learning for load flexibility and energy efficiency," Applied Energy, Elsevier, vol. 304(C).
    9. Kensuke Ito, 2024. "Cryptoeconomics and Tokenomics as Economics: A Survey with Opinions," Papers 2407.15715, arXiv.org.
    10. Antonopoulos, Ioannis & Robu, Valentin & Couraud, Benoit & Kirli, Desen & Norbu, Sonam & Kiprakis, Aristides & Flynn, David & Elizondo-Gonzalez, Sergio & Wattam, Steve, 2020. "Artificial intelligence and machine learning approaches to energy demand-side response: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    11. O’Malley, Cormac & de Mars, Patrick & Badesa, Luis & Strbac, Goran, 2023. "Reinforcement learning and mixed-integer programming for power plant scheduling in low carbon systems: Comparison and hybridisation," Applied Energy, Elsevier, vol. 349(C).
    12. Yuchao Dong, 2022. "Randomized Optimal Stopping Problem in Continuous time and Reinforcement Learning Algorithm," Papers 2208.02409, arXiv.org, revised Sep 2023.
    13. Shijun Wang & Baocheng Zhu & Chen Li & Mingzhe Wu & James Zhang & Wei Chu & Yuan Qi, 2020. "Riemannian Proximal Policy Optimization," Computer and Information Science, Canadian Center of Science and Education, vol. 13(3), pages 1-93, August.
    14. Xuan-Kun Li & Jian-Xu Ma & Xiang-Yu Li & Jun-Jie Hu & Chuan-Yang Ding & Feng-Kai Han & Xiao-Min Guo & Xi Tan & Xian-Min Jin, 2024. "High-efficiency reinforcement learning with hybrid architecture photonic integrated circuit," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    15. Yukun Cheng & Xiaotie Deng & Dominik Scheder, 2022. "Recent studies of agent incentives in internet resource allocation and pricing," Annals of Operations Research, Springer, vol. 314(1), pages 49-76, July.
    16. Iwao Maeda & David deGraw & Michiharu Kitano & Hiroyasu Matsushima & Hiroki Sakaji & Kiyoshi Izumi & Atsuo Kato, 2020. "Deep Reinforcement Learning in Agent Based Financial Market Simulation," JRFM, MDPI, vol. 13(4), pages 1-17, April.
    17. Li, Wenqing & Ni, Shaoquan, 2022. "Train timetabling with the general learning environment and multi-agent deep reinforcement learning," Transportation Research Part B: Methodological, Elsevier, vol. 157(C), pages 230-251.
    18. Ayman Chaouki & Stephen Hardiman & Christian Schmidt & Emmanuel S'eri'e & Joachim de Lataillade, 2020. "Deep Deterministic Portfolio Optimization," Papers 2003.06497, arXiv.org, revised Apr 2020.
    19. Se-Hoon Jung & Jun-Ho Huh, 2019. "A Novel on Transmission Line Tower Big Data Analysis Model Using Altered K-means and ADQL," Sustainability, MDPI, vol. 11(13), pages 1-25, June.
    20. Gang Hu & Ming Gu, 2024. "Markowitz Meets Bellman: Knowledge-distilled Reinforcement Learning for Portfolio Management," Papers 2405.05449, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2106.03007. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.