IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2103.10958.html
   My bibliography  Save this paper

Multicriteria asset allocation in practice

Author

Listed:
  • Kerstin Dachert
  • Ria Grindel
  • Elisabeth Leoff
  • Jonas Mahnkopp
  • Florian Schirra
  • Jorg Wenzel

Abstract

In this paper we consider the strategic asset allocation of an insurance company. This task can be seen as a special case of portfolio optimization. In the 1950s, Markowitz proposed to formulate portfolio optimization as a bicriteria optimization problem considering risk and return as objectives. However, recent developments in the field of insurance require four and more objectives to be considered, among them the so-called solvency ratio that stems from the Solvency II directive of the European Union issued in 2009. Moreover, the distance to the current portfolio plays an important role. While literature on portfolio optimization with three objectives is already scarce, applications with four and more objectives have not yet been solved so far by multi-objective approaches based on scalarizations. However, recent algorithmic improvements in the field of exact multi-objective methods allow the incorporation of many objectives and the generation of well-spread representations within few iterations. We describe the implementation of such an algorithm for a strategic asset allocation with four objective functions and demonstrate its usefulness for the practitioner. Our approach is in operative use in a German insurance company. Our partners report a significant improvement in their decision making process since, due to the proper integration of the new objectives, the software proposes portfolios of much better quality than before within short running time.

Suggested Citation

  • Kerstin Dachert & Ria Grindel & Elisabeth Leoff & Jonas Mahnkopp & Florian Schirra & Jorg Wenzel, 2021. "Multicriteria asset allocation in practice," Papers 2103.10958, arXiv.org.
  • Handle: RePEc:arx:papers:2103.10958
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2103.10958
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Klamroth, Kathrin & Lacour, Renaud & Vanderpooten, Daniel, 2015. "On the representation of the search region in multi-objective optimization," European Journal of Operational Research, Elsevier, vol. 245(3), pages 767-778.
    2. Dächert, Kerstin & Klamroth, Kathrin & Lacour, Renaud & Vanderpooten, Daniel, 2017. "Efficient computation of the search region in multi-objective optimization," European Journal of Operational Research, Elsevier, vol. 260(3), pages 841-855.
    3. M. H. A. Davis & A. R. Norman, 1990. "Portfolio Selection with Transaction Costs," Mathematics of Operations Research, INFORMS, vol. 15(4), pages 676-713, November.
    4. Roy Kouwenberg, 2018. "Strategic asset allocation for insurers under Solvency II," Journal of Asset Management, Palgrave Macmillan, vol. 19(7), pages 447-459, December.
    5. Marcos Escobar & Paul Kriebel & Markus Wahl & Rudi Zagst, 2019. "Portfolio optimization under Solvency II," Annals of Operations Research, Springer, vol. 281(1), pages 193-227, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kerstin Dächert & Ria Grindel & Elisabeth Leoff & Jonas Mahnkopp & Florian Schirra & Jörg Wenzel, 2022. "Multicriteria asset allocation in practice," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(2), pages 349-373, June.
    2. Marcos Escobar-Anel & Michel Kschonnek & Rudi Zagst, 2022. "Portfolio optimization: not necessarily concave utility and constraints on wealth and allocation," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 95(1), pages 101-140, February.
    3. Satya Tamby & Daniel Vanderpooten, 2021. "Enumeration of the Nondominated Set of Multiobjective Discrete Optimization Problems," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 72-85, January.
    4. Kolos Csaba 'Agoston & Veronika Varga, 2024. "Bertrand oligopoly in insurance markets with Value at Risk Constraints," Papers 2404.17915, arXiv.org.
    5. Doğan, Ilgın & Lokman, Banu & Köksalan, Murat, 2022. "Representing the nondominated set in multi-objective mixed-integer programs," European Journal of Operational Research, Elsevier, vol. 296(3), pages 804-818.
    6. Mesquita-Cunha, Mariana & Figueira, José Rui & Barbosa-Póvoa, Ana Paula, 2023. "New ϵ−constraint methods for multi-objective integer linear programming: A Pareto front representation approach," European Journal of Operational Research, Elsevier, vol. 306(1), pages 286-307.
    7. Gabriele Eichfelder & Peter Kirst & Laura Meng & Oliver Stein, 2021. "A general branch-and-bound framework for continuous global multiobjective optimization," Journal of Global Optimization, Springer, vol. 80(1), pages 195-227, May.
    8. Burdett, Robert L & Corry, Paul & Yarlagadda, Prasad & Cook, David & Birgan, Sean, 2024. "Multicriteria optimization techniques for understanding the case mix landscape of a hospital," European Journal of Operational Research, Elsevier, vol. 319(1), pages 263-291.
    9. Moritz Link & Stefan Volkwein, 2023. "Adaptive piecewise linear relaxations for enclosure computations for nonconvex multiobjective mixed-integer quadratically constrained programs," Journal of Global Optimization, Springer, vol. 87(1), pages 97-132, September.
    10. Pham Thi Hoai & Hoai An Le Thi & Nguyen Canh Nam, 2021. "Half-open polyblock for the representation of the search region in multiobjective optimization problems: its application and computational aspects," 4OR, Springer, vol. 19(1), pages 41-70, March.
    11. De Santis, Marianna & Grani, Giorgio & Palagi, Laura, 2020. "Branching with hyperplanes in the criterion space: The frontier partitioner algorithm for biobjective integer programming," European Journal of Operational Research, Elsevier, vol. 283(1), pages 57-69.
    12. Holzmann, Tim & Smith, J.C., 2018. "Solving discrete multi-objective optimization problems using modified augmented weighted Tchebychev scalarizations," European Journal of Operational Research, Elsevier, vol. 271(2), pages 436-449.
    13. Gabriele Eichfelder & Oliver Stein & Leo Warnow, 2024. "A Solver for Multiobjective Mixed-Integer Convex and Nonconvex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 203(2), pages 1736-1766, November.
    14. Ozgu Turgut & Evrim Dalkiran & Alper E. Murat, 2019. "An exact parallel objective space decomposition algorithm for solving multi-objective integer programming problems," Journal of Global Optimization, Springer, vol. 75(1), pages 35-62, September.
    15. Sunney Fotedar & Ann-Brith Strömberg & Torgny Almgren & Stefan Cedergren, 2023. "A criterion space decomposition approach to generalized tri-objective tactical resource allocation," Computational Management Science, Springer, vol. 20(1), pages 1-28, December.
    16. Kerstin Dächert & Tino Fleuren & Kathrin Klamroth, 2024. "A simple, efficient and versatile objective space algorithm for multiobjective integer programming," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 100(1), pages 351-384, August.
    17. Eichfelder, Gabriele & Warnow, Leo, 2023. "Advancements in the computation of enclosures for multi-objective optimization problems," European Journal of Operational Research, Elsevier, vol. 310(1), pages 315-327.
    18. Kerstin Dächert & Sauleh Siddiqui & Javier Saez-Gallego & Steven A. Gabriel & Juan Miguel Morales, 2019. "A Bicriteria Perspective on L-Penalty Approaches – a Corrigendum to Siddiqui and Gabriel’s L-Penalty Approach for Solving MPECs," Networks and Spatial Economics, Springer, vol. 19(4), pages 1199-1214, December.
    19. Colin Atkinson & Emmeline Storey, 2010. "Building an Optimal Portfolio in Discrete Time in the Presence of Transaction Costs," Applied Mathematical Finance, Taylor & Francis Journals, vol. 17(4), pages 323-357.
    20. Dokuchaev, Nikolai, 2010. "Optimality of myopic strategies for multi-stock discrete time market with management costs," European Journal of Operational Research, Elsevier, vol. 200(2), pages 551-556, January.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2103.10958. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.