IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2102.10213.html
   My bibliography  Save this paper

The relations of Choquet Integral and G-Expectation

Author

Listed:
  • Ju Hong Kim

Abstract

In incomplete financial markets, there exists a set of equivalent martingale measures (or risk-neutral probabilities) in an arbitrage-free pricing of the contingent claims. Minimax expectation is closely related to the $g$-expectation which is the solution of a certain stochastic differential equation. We show that Choquet expectation and minimax expectation are equal in pricing European type options, whose payoff is a monotone function of the terminal stock price $S_T$.

Suggested Citation

  • Ju Hong Kim, 2021. "The relations of Choquet Integral and G-Expectation," Papers 2102.10213, arXiv.org.
  • Handle: RePEc:arx:papers:2102.10213
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2102.10213
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Zengjing & Kulperger, Reg, 2006. "Minimax pricing and Choquet pricing," Insurance: Mathematics and Economics, Elsevier, vol. 38(3), pages 518-528, June.
    2. He, Kun & Hu, Mingshang & Chen, Zengjing, 2009. "The relationship between risk measures and choquet expectations in the framework of g-expectations," Statistics & Probability Letters, Elsevier, vol. 79(4), pages 508-512, February.
    3. Rosazza Gianin, Emanuela, 2006. "Risk measures via g-expectations," Insurance: Mathematics and Economics, Elsevier, vol. 39(1), pages 19-34, August.
    4. Hongxia Wang, 2015. "Conditional Choquet Expectation," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 44(18), pages 3782-3795, September.
    5. Jiang, Long, 2009. "A necessary and sufficient condition for probability measures dominated by g-expectation," Statistics & Probability Letters, Elsevier, vol. 79(2), pages 196-201, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ji, Ronglin & Shi, Xuejun & Wang, Shijie & Zhou, Jinming, 2019. "Dynamic risk measures for processes via backward stochastic differential equations," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 43-50.
    2. Ji, Ronglin & Shi, Xuejun & Wang, Shijie & Zhou, Jinming, 2022. "Convexity and sublinearity of g-expectations," Statistics & Probability Letters, Elsevier, vol. 189(C).
    3. Dejian Tian & Xunlian Wang, 2023. "Dynamic star-shaped risk measures and $g$-expectations," Papers 2305.02481, arXiv.org.
    4. Xiangyu Cui & Xun Li & Duan Li & Yun Shi, 2014. "Time Consistent Behavior Portfolio Policy for Dynamic Mean-Variance Formulation," Papers 1408.6070, arXiv.org, revised Aug 2015.
    5. Tianxiao Wang, 2012. "Risk minimizing of derivatives via dynamic g-expectation and related topics," Papers 1208.2068, arXiv.org.
    6. Miryana Grigorova & Peter Imkeller & Elias Offen & Youssef Ouknine & Marie-Claire Quenez, 2015. "Reflected BSDEs when the obstacle is not right-continuous and optimal stopping," Papers 1504.06094, arXiv.org, revised May 2017.
    7. Xiangyu Cui & Duan Li & Xun Li, 2014. "Mean-Variance Policy for Discrete-time Cone Constrained Markets: The Consistency in Efficiency and Minimum-Variance Signed Supermartingale Measure," Papers 1403.0718, arXiv.org.
    8. Freddy Delbaen & Shige Peng & Emanuela Rosazza Gianin, 2010. "Representation of the penalty term of dynamic concave utilities," Finance and Stochastics, Springer, vol. 14(3), pages 449-472, September.
    9. Elisa Mastrogiacomo & Emanuela Rosazza Gianin, 2019. "Time-consistency of risk measures: how strong is such a property?," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(1), pages 287-317, June.
    10. Rohini Kumar & Frederick Forrest Miller & Hussein Nasralah & Stephan Sturm, 2024. "Risk-indifference Pricing of American-style Contingent Claims," Papers 2409.00095, arXiv.org.
    11. Grigorova, Miryana & Imkeller, Peter & Ouknine, Youssef & Quenez, Marie-Claire, 2018. "Optimal Stopping With ƒ-Expectations: the irregular case," Center for Mathematical Economics Working Papers 587, Center for Mathematical Economics, Bielefeld University.
    12. Bayraktar, Erhan & Yao, Song, 2011. "Optimal stopping for non-linear expectations--Part II," Stochastic Processes and their Applications, Elsevier, vol. 121(2), pages 212-264, February.
    13. Boonen, Tim J. & Tan, Ken Seng & Zhuang, Sheng Chao, 2016. "The role of a representative reinsurer in optimal reinsurance," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 196-204.
    14. Yuanyuan Sui & Helin Wu, 2011. "Inf-convolution of g_\Gamma-solution and its applications," Papers 1103.1050, arXiv.org, revised May 2012.
    15. Fei Lung Yuen & Hailiang Yang, 2012. "Optimal Asset Allocation: A Worst Scenario Expectation Approach," Journal of Optimization Theory and Applications, Springer, vol. 153(3), pages 794-811, June.
    16. Guangchen Wang & Hua Xiao, 2015. "Arrow Sufficient Conditions for Optimality of Fully Coupled Forward–Backward Stochastic Differential Equations with Applications to Finance," Journal of Optimization Theory and Applications, Springer, vol. 165(2), pages 639-656, May.
    17. Bayraktar, Erhan & Yao, Song, 2015. "Doubly reflected BSDEs with integrable parameters and related Dynkin games," Stochastic Processes and their Applications, Elsevier, vol. 125(12), pages 4489-4542.
    18. Erhan Bayraktar & Song Yao, 2009. "Optimal Stopping for Non-linear Expectations," Papers 0905.3601, arXiv.org, revised Jan 2011.
    19. Alessandro Calvia & Emanuela Rosazza Gianin, 2019. "Risk measures and progressive enlargement of filtration: a BSDE approach," Papers 1904.13257, arXiv.org, revised Mar 2020.
    20. Jana Bielagk & Arnaud Lionnet & Gonçalo dos Reis, 2015. "Equilibrium pricing under relative performance concerns," Working Papers hal-01245812, HAL.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2102.10213. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.