IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v153y2012i3d10.1007_s10957-011-9972-6.html
   My bibliography  Save this article

Optimal Asset Allocation: A Worst Scenario Expectation Approach

Author

Listed:
  • Fei Lung Yuen

    (Heriot-Watt University)

  • Hailiang Yang

    (The University of Hong Kong)

Abstract

Mean-variance criterion has long been the main stream approach in the optimal portfolio theory. The investors try to balance the risk and the return on their portfolio. In this paper, the deviation of the asset return from the investor’s expectation in the worst scenario is used as the measure of risk for portfolio selection. One important advantage of this approach is that the investors can base on their own knowledge, information, and preference on various risks, in addition to the asset’s volatility, to adjust their exposure to various risks. It also pinpoints one main concern of the investors when they invest, the amount they lose in the worst situation.

Suggested Citation

  • Fei Lung Yuen & Hailiang Yang, 2012. "Optimal Asset Allocation: A Worst Scenario Expectation Approach," Journal of Optimization Theory and Applications, Springer, vol. 153(3), pages 794-811, June.
  • Handle: RePEc:spr:joptap:v:153:y:2012:i:3:d:10.1007_s10957-011-9972-6
    DOI: 10.1007/s10957-011-9972-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-011-9972-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-011-9972-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Merton, Robert C, 1973. "An Intertemporal Capital Asset Pricing Model," Econometrica, Econometric Society, vol. 41(5), pages 867-887, September.
    2. Longstaff, Francis A, 2001. "Optimal Portfolio Choice and the Valuation of Illiquid Securities," The Review of Financial Studies, Society for Financial Studies, vol. 14(2), pages 407-431.
    3. Paul A. Samuelson, 2011. "Lifetime Portfolio Selection by Dynamic Stochastic Programming," World Scientific Book Chapters, in: Leonard C MacLean & Edward O Thorp & William T Ziemba (ed.), THE KELLY CAPITAL GROWTH INVESTMENT CRITERION THEORY and PRACTICE, chapter 31, pages 465-472, World Scientific Publishing Co. Pte. Ltd..
    4. Gennotte, Gerard, 1986. "Optimal Portfolio Choice under Incomplete Information," Journal of Finance, American Finance Association, vol. 41(3), pages 733-746, July.
    5. Bawa, Vijay S., 1978. "Safety-First, Stochastic Dominance, and Optimal Portfolio Choice," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 13(2), pages 255-271, June.
    6. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    7. Chen, Ping & Yang, Hailiang & Yin, George, 2008. "Markowitz's mean-variance asset-liability management with regime switching: A continuous-time model," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 456-465, December.
    8. Bertsimas, Dimitris & Lauprete, Geoffrey J. & Samarov, Alexander, 2004. "Shortfall as a risk measure: properties, optimization and applications," Journal of Economic Dynamics and Control, Elsevier, vol. 28(7), pages 1353-1381, April.
    9. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    10. Rosazza Gianin, Emanuela, 2006. "Risk measures via g-expectations," Insurance: Mathematics and Economics, Elsevier, vol. 39(1), pages 19-34, August.
    11. Robert Elliott & Tak Siu & Leunglung Chan, 2008. "A PDE approach for risk measures for derivatives with regime switching," Annals of Finance, Springer, vol. 4(1), pages 55-74, January.
    12. Tak Kuen Siu & Hailiang Yang, 2000. "A PDE approach to risk measures of derivatives," Applied Mathematical Finance, Taylor & Francis Journals, vol. 7(3), pages 211-228.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yam, Sheung Chi Phillip & Yang, Hailiang & Yuen, Fei Lung, 2016. "Optimal asset allocation: Risk and information uncertainty," European Journal of Operational Research, Elsevier, vol. 251(2), pages 554-561.
    2. Ben-Zhang Yang & Xiaoping Lu & Guiyuan Ma & Song-Ping Zhu, 2020. "Robust Portfolio Optimization with Multi-Factor Stochastic Volatility," Journal of Optimization Theory and Applications, Springer, vol. 186(1), pages 264-298, July.
    3. Ben-Zhang Yang & Xiaoping Lu & Guiyuan Ma & Song-Ping Zhu, 2019. "Robust portfolio optimization with multi-factor stochastic volatility," Papers 1910.06872, arXiv.org, revised Jun 2020.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Penaranda, Francisco, 2007. "Portfolio choice beyond the traditional approach," LSE Research Online Documents on Economics 24481, London School of Economics and Political Science, LSE Library.
    2. Sørensen, Carsten & Trolle, Anders Bjerre, 2006. "Dynamic asset allocation and latent variables," Working Papers 2004-8, Copenhagen Business School, Department of Finance.
    3. John Y. Campbell, 2000. "Asset Pricing at the Millennium," Journal of Finance, American Finance Association, vol. 55(4), pages 1515-1567, August.
    4. Peter Nystrup & Stephen Boyd & Erik Lindström & Henrik Madsen, 2019. "Multi-period portfolio selection with drawdown control," Annals of Operations Research, Springer, vol. 282(1), pages 245-271, November.
    5. John H. Cochrane, 1999. "New facts in finance," Economic Perspectives, Federal Reserve Bank of Chicago, vol. 23(Q III), pages 36-58.
    6. John Y. Campbell & Yeung Lewis Chanb & M. Viceira, 2013. "A multivariate model of strategic asset allocation," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part II, chapter 39, pages 809-848, World Scientific Publishing Co. Pte. Ltd..
    7. Penikas, Henry, 2010. "Copula-Models in Foreign Exchange Risk-Management of a Bank," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 17(1), pages 62-87.
    8. Michael W. Brandt & Amit Goyal & Pedro Santa-Clara & Jonathan R. Stroud, 2005. "A Simulation Approach to Dynamic Portfolio Choice with an Application to Learning About Return Predictability," The Review of Financial Studies, Society for Financial Studies, vol. 18(3), pages 831-873.
    9. Clemens, Christiane & Soretz, Susanne, 1999. "Konsequenzen des Zins- und Einkommensrisikos auf das wirtschaftliche Wachstum," Hannover Economic Papers (HEP) dp-221, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    10. Kihlstrom, Richard, 2009. "Risk aversion and the elasticity of substitution in general dynamic portfolio theory: Consistent planning by forward looking, expected utility maximizing investors," Journal of Mathematical Economics, Elsevier, vol. 45(9-10), pages 634-663, September.
    11. Simon Lysbjerg Hansen, 2005. "A Malliavin-based Monte-Carlo Approach for Numerical Solution of Stochastic Control Problems: Experiences from Merton's Problem," Computing in Economics and Finance 2005 391, Society for Computational Economics.
    12. Ferstl, Robert & Weissensteiner, Alex, 2011. "Asset-liability management under time-varying investment opportunities," Journal of Banking & Finance, Elsevier, vol. 35(1), pages 182-192, January.
    13. Hui Chen & Nengjiu Ju & Jianjun Miao, 2014. "Dynamic Asset Allocation with Ambiguous Return Predictability," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 17(4), pages 799-823, October.
    14. Wang, Yuanrong & Aste, Tomaso, 2023. "Dynamic portfolio optimization with inverse covariance clustering," LSE Research Online Documents on Economics 117701, London School of Economics and Political Science, LSE Library.
    15. Davi Valladão & Thuener Silva & Marcus Poggi, 2019. "Time-consistent risk-constrained dynamic portfolio optimization with transactional costs and time-dependent returns," Annals of Operations Research, Springer, vol. 282(1), pages 379-405, November.
    16. Lin, Wen-chang & Lu, Jin-ray, 2012. "Risky asset allocation and consumption rule in the presence of background risk and insurance markets," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 150-158.
    17. Li, Zhongfei & Yao, Jing & Li, Duan, 2010. "Behavior patterns of investment strategies under Roy's safety-first principle," The Quarterly Review of Economics and Finance, Elsevier, vol. 50(2), pages 167-179, May.
    18. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    19. Yacine AÏT‐SAHALI & Michael W. Brandt, 2001. "Variable Selection for Portfolio Choice," Journal of Finance, American Finance Association, vol. 56(4), pages 1297-1351, August.
    20. Börsch-Supan, Axel & Ludwig, Alexander & Sommer, Mathias, 2005. "Aging and asset prices," Papers 07-29, Sonderforschungsbreich 504.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:153:y:2012:i:3:d:10.1007_s10957-011-9972-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.