On Technical Trading and Social Media Indicators in Cryptocurrencies' Price Classification Through Deep Learning
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Katsiampa, Paraskevi, 2017. "Volatility estimation for Bitcoin: A comparison of GARCH models," Economics Letters, Elsevier, vol. 158(C), pages 3-6.
- P. M. Lerman, 1980. "Fitting Segmented Regression Models by Grid Search," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 29(1), pages 77-84, March.
- Cathy Yi-Hsuan Chen & Christian M. Hafner, 2019.
"Sentiment-Induced Bubbles in the Cryptocurrency Market,"
JRFM, MDPI, vol. 12(2), pages 1-12, April.
- Chen, Cathy Yi-Hsuan & Hafner, Christian, 2019. "Sentiment-Induced Bubbles in the Cryptocurrency Market," LIDAM Reprints ISBA 2019053, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Lahmiri, Salim & Bekiros, Stelios, 2019. "Cryptocurrency forecasting with deep learning chaotic neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 35-40.
- Erdinc Akyildirim & Ahmet Goncu & Ahmet Sensoy, 2021. "Prediction of cryptocurrency returns using machine learning," Annals of Operations Research, Springer, vol. 297(1), pages 3-36, February.
- Lahmiri, Salim & Bekiros, Stelios & Salvi, Antonio, 2018. "Long-range memory, distributional variation and randomness of bitcoin volatility," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 43-48.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Gil Cohen, 2021. "Trading Cryptocurrencies Using Second Order Stochastic Dominance," Mathematics, MDPI, vol. 9(22), pages 1-10, November.
- Caferra, Rocco, 2022. "Sentiment spillover and price dynamics: Information flow in the cryptocurrency and stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Mingzhe Wei & Georgios Sermpinis & Charalampos Stasinakis, 2023. "Forecasting and trading Bitcoin with machine learning techniques and a hybrid volatility/sentiment leverage," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 852-871, July.
- Lahmiri, Salim & Bekiros, Stelios, 2019. "Decomposing the persistence structure of Islamic and green crypto-currencies with nonlinear stepwise filtering," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 334-341.
- Ren, Yi-Shuai & Ma, Chao-Qun & Kong, Xiao-Lin & Baltas, Konstantinos & Zureigat, Qasim, 2022. "Past, present, and future of the application of machine learning in cryptocurrency research," Research in International Business and Finance, Elsevier, vol. 63(C).
- Yue, Yao & Li, Xuerong & Zhang, Dingxuan & Wang, Shouyang, 2021. "How cryptocurrency affects economy? A network analysis using bibliometric methods," International Review of Financial Analysis, Elsevier, vol. 77(C).
- Jiménez, Inés & Mora-Valencia, Andrés & Perote, Javier, 2022. "Semi-nonparametric risk assessment with cryptocurrencies," Research in International Business and Finance, Elsevier, vol. 59(C).
- Chen, Yan & Zhang, Lei & Bouri, Elie, 2024. "Can a self-exciting jump structure better capture the jump behavior of cryptocurrencies? A comparative analysis with the S&P 500," Research in International Business and Finance, Elsevier, vol. 69(C).
- Goodell, John W. & Ben Jabeur, Sami & Saâdaoui, Foued & Nasir, Muhammad Ali, 2023. "Explainable artificial intelligence modeling to forecast bitcoin prices," International Review of Financial Analysis, Elsevier, vol. 88(C).
- Alves, P.R.L., 2020. "Dynamic characteristic of Bitcoin cryptocurrency in the reconstruction scheme," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
- Hakan Pabuccu & Adrian Barbu, 2023. "Feature Selection with Annealing for Forecasting Financial Time Series," Papers 2303.02223, arXiv.org, revised Feb 2024.
- Nagula, Pavan Kumar & Alexakis, Christos, 2022. "A new hybrid machine learning model for predicting the bitcoin (BTC-USD) price," Journal of Behavioral and Experimental Finance, Elsevier, vol. 36(C).
- C. Y. Tan & Y. B. Koh & K. H. Ng & K. H. Ng, 2019. "Structural Change Analysis of Active Cryptocurrency Market," Papers 1909.10679, arXiv.org.
- Klender Cortez & Martha del Pilar Rodríguez-García & Samuel Mongrut, 2020. "Exchange Market Liquidity Prediction with the K-Nearest Neighbor Approach: Crypto vs. Fiat Currencies," Mathematics, MDPI, vol. 9(1), pages 1-15, December.
- Chaim, Pedro & Laurini, Márcio P., 2019. "Nonlinear dependence in cryptocurrency markets," The North American Journal of Economics and Finance, Elsevier, vol. 48(C), pages 32-47.
- Lepomäki, Laura & Kanniainen, Juho & Hansen, Henri, 2021. "Retaliation in Bitcoin networks," Economics Letters, Elsevier, vol. 203(C).
- Lennart Ante, 2020. "A place next to Satoshi: foundations of blockchain and cryptocurrency research in business and economics," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(2), pages 1305-1333, August.
- Afees A. Salisu & Idris Adediran, 2018. "Testing for time-varying stochastic volatility in Bitcoin returns," Working Papers 060, Centre for Econometric and Allied Research, University of Ibadan.
- Leonardo Ieracitano Vieira & Márcio Poletti Laurini, 2023. "Time-varying higher moments in Bitcoin," Digital Finance, Springer, vol. 5(2), pages 231-260, June.
- Lahmiri, Salim & Bekiros, Stelios, 2020. "Intelligent forecasting with machine learning trading systems in chaotic intraday Bitcoin market," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
- Ahmed, Walid M.A., 2021. "How do Islamic equity markets respond to good and bad volatility of cryptocurrencies? The case of Bitcoin," Pacific-Basin Finance Journal, Elsevier, vol. 70(C).
- Pınar Kaya Soylu & Mustafa Okur & Özgür Çatıkkaş & Z. Ayca Altintig, 2020. "Long Memory in the Volatility of Selected Cryptocurrencies: Bitcoin, Ethereum and Ripple," JRFM, MDPI, vol. 13(6), pages 1-21, May.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2021-02-22 (Big Data)
- NEP-CMP-2021-02-22 (Computational Economics)
- NEP-CWA-2021-02-22 (Central and Western Asia)
- NEP-PAY-2021-02-22 (Payment Systems and Financial Technology)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2102.08189. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.