IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2101.01065.html
   My bibliography  Save this paper

Predicting the Performance of a Future United Kingdom Grid and Wind Fleet When Providing Power to a Fleet of Battery Electric Vehicles

Author

Listed:
  • Anthony D Stephens
  • David R Walwyn

Abstract

Sales of new petrol and diesel passenger vehicles may not be permitted in the United Kingdom (UK) post-2030. Should this happen, it is likely that vehicles presently powered by hydrocarbons will be progressively replaced by Battery Electric Vehicles (BEVs). This paper describes the use of mathematical modelling, drawing on real time records of the UK electricity grid, to investigate the likely performance of the grid when supplying power to a fleet of up to 35 million BEVs. The model highlights the importance of understanding how the grid will cope when powering a BEV fleet under conditions similar to those experienced during an extended wind lull during the 3rd week of January 2017. Allowing a two-way flow of electricity between the BEVs and the grid, known as the vehicle-to-grid (V2G) configuration, turns out to be of key importance in minimising the need for additional gas turbine generation or energy storage during wind lulls. This study has shown that with the use of V2G, it should be possible to provide power to about 15 million BEVs with the gas turbine capacity currently available. Without V2G, it is likely that the current capacity of the gas turbines and associated gas infrastructure might be overwhelmed by even a relatively small BEV fleet. Since it is anticipated that 80% of BEV owners will be able to park the vehicles at their residences, widespread V2G will enable both the powering of residences when supply from the grid is constrained and the charging of BEVs when supply is in excess. The model shows that this configuration will maintain a constant load on the grid and avoid the use of either expensive alternative storage or hydrogen obtained by reforming methane. There should be no insuperable problem in providing power to the 20% of BEV owners who do not have parking at their residences; their power could come directly from the grid.

Suggested Citation

  • Anthony D Stephens & David R Walwyn, 2020. "Predicting the Performance of a Future United Kingdom Grid and Wind Fleet When Providing Power to a Fleet of Battery Electric Vehicles," Papers 2101.01065, arXiv.org.
  • Handle: RePEc:arx:papers:2101.01065
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2101.01065
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anthony D Stephens & David R Walwyn, 2018. "The Security of the United Kingdom Electricity Imports under Conditions of High European Demand," Papers 1802.07457, arXiv.org.
    2. Siddique, Muhammad Bilal & Thakur, Jagruti, 2020. "Assessment of curtailed wind energy potential for off-grid applications through mobile battery storage," Energy, Elsevier, vol. 201(C).
    3. Tony Stephens & David R. Walwyn, 2020. "Development of Mathematical Models to Explore the Potential of Wind Fleets to Decarbonize Electricity Grid Systems," Chapters, in: Karam Youssef Maalawi (ed.), Modeling, Simulation and Optimization of Wind Farms and Hybrid Systems, IntechOpen.
    4. Li, You & Hewitt, C.N., 2008. "The effect of trade between China and the UK on national and global carbon dioxide emissions," Energy Policy, Elsevier, vol. 36(6), pages 1907-1914, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xiaojun & Chen, Yiping & Chen, Jingjing & Mao, Bingjing & Peng, Lihong & Yu, Ang, 2022. "China's CO2 regional synergistic emission reduction: Killing two birds with one stone?," Energy Policy, Elsevier, vol. 168(C).
    2. Yang, Ranran & Long, Ruyin & Yue, Ting & Shi, Haihong, 2014. "Calculation of embodied energy in Sino-USA trade: 1997–2011," Energy Policy, Elsevier, vol. 72(C), pages 110-119.
    3. Goulden, Murray & Ryley, Tim & Dingwall, Robert, 2014. "Beyond ‘predict and provide’: UK transport, the growth paradigm and climate change," Transport Policy, Elsevier, vol. 32(C), pages 139-147.
    4. Haoran Wang & Toshiyuki Fujita, 2023. "A Review of Research on Embodied Carbon in International Trade," Sustainability, MDPI, vol. 15(10), pages 1-15, May.
    5. Liu, Ying & Jayanthakumaran, Kankesu & Neri, Frank, 2013. "Who is responsible for the CO2 emissions that China produces?," Energy Policy, Elsevier, vol. 62(C), pages 1412-1419.
    6. Suvajit Banerjee, 2021. "Addressing the carbon emissions embodied in India’s bilateral trade with two eminent Annex-II parties: with input–output and spatial decomposition analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 5430-5464, April.
    7. Zhuoxin Lu & Xiaoyuan Xu & Zheng Yan & Dong Han & Shiwei Xia, 2024. "Mobile Energy-Storage Technology in Power Grid: A Review of Models and Applications," Sustainability, MDPI, vol. 16(16), pages 1-19, August.
    8. Zhong, Zhangqi & Jiang, Lei & Zhou, Peng, 2018. "Transnational transfer of carbon emissions embodied in trade: Characteristics and determinants from a spatial perspective," Energy, Elsevier, vol. 147(C), pages 858-875.
    9. Yunfeng, Yan & Laike, Yang, 2010. "China's foreign trade and climate change: A case study of CO2 emissions," Energy Policy, Elsevier, vol. 38(1), pages 350-356, January.
    10. Zhou, Dequn & Zhou, Xiaoyong & Xu, Qing & Wu, Fei & Wang, Qunwei & Zha, Donglan, 2018. "Regional embodied carbon emissions and their transfer characteristics in China," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 180-193.
    11. Chen, G.Q. & Zhang, Bo, 2010. "Greenhouse gas emissions in China 2007: Inventory and input-output analysis," Energy Policy, Elsevier, vol. 38(10), pages 6180-6193, October.
    12. López, Luis Antonio & Arce, Guadalupe & Zafrilla, Jorge Enrique, 2013. "Parcelling virtual carbon in the pollution haven hypothesis," Energy Economics, Elsevier, vol. 39(C), pages 177-186.
    13. Hehua Zhao & Hongwen Chen & Lei He, 2022. "Embodied Carbon Emissions and Regional Transfer Characteristics—Evidence from China," Sustainability, MDPI, vol. 14(4), pages 1-20, February.
    14. Leying Wu & Zheng Wang, 2017. "Examining drivers of the emissions embodied in trade," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-14, April.
    15. Zhang, Zengkai & Guo, Ju'e & Hewings, Geoffrey J.D., 2014. "The effects of direct trade within China on regional and national CO2 emissions," Energy Economics, Elsevier, vol. 46(C), pages 161-175.
    16. Xi Xie & Wenjia Cai & Yongkai Jiang & Weihua Zeng, 2015. "Carbon Footprints and Embodied Carbon Flows Analysis for China’s Eight Regions: A New Perspective for Mitigation Solutions," Sustainability, MDPI, vol. 7(8), pages 1-17, July.
    17. Tan, Hao & Sun, Aijun & Lau, Henry, 2013. "CO2 embodiment in China–Australia trade: The drivers and implications," Energy Policy, Elsevier, vol. 61(C), pages 1212-1220.
    18. Su, Bin & Huang, H.C. & Ang, B.W. & Zhou, P., 2010. "Input-output analysis of CO2 emissions embodied in trade: The effects of sector aggregation," Energy Economics, Elsevier, vol. 32(1), pages 166-175, January.
    19. Bingbing Zhang & Lelan Kong & Zhehong Xu & Chuanwang Sun, 2024. "Evolution of China's Role in the Structure of Global Carbon Emission Transfers: An Empirical Analysis Based on Network Governance," China & World Economy, Institute of World Economics and Politics, Chinese Academy of Social Sciences, vol. 32(1), pages 130-166, January.
    20. Chen, Z.M. & Chen, G.Q., 2011. "Embodied carbon dioxide emission at supra-national scale: A coalition analysis for G7, BRIC, and the rest of the world," Energy Policy, Elsevier, vol. 39(5), pages 2899-2909, May.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2101.01065. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.