IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2012.15705.html
   My bibliography  Save this paper

A Bayesian viewpoint on the price formation process

Author

Listed:
  • Joffrey Derchu

Abstract

We introduce a simple framework in which market participants update their prior about an efficient price with a model-based learning process. We show that exponential intensities for the arrival of aggressive orders arise naturally in this setting. Our approach allows us to fully describe market dynamics in the case with Brownian efficient price and informed market takers. We are also able to revisit the emergence of market impact due to meta-order splitting, making several connections with existing literature.

Suggested Citation

  • Joffrey Derchu, 2020. "A Bayesian viewpoint on the price formation process," Papers 2012.15705, arXiv.org, revised Sep 2021.
  • Handle: RePEc:arx:papers:2012.15705
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2012.15705
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aurélien Alfonsi & Pierre Blanc, 2016. "Dynamic optimal execution in a mixed-market-impact Hawkes price model," Finance and Stochastics, Springer, vol. 20(1), pages 183-218, January.
    2. Aurélien Alfonsi & Pierre Blanc, 2016. "Dynamic optimal execution in a mixed-market-impact Hawkes price model," Finance and Stochastics, Springer, vol. 20(1), pages 183-218, January.
    3. Aurélien Alfonsi & Pierre Blanc, 2016. "Dynamic optimal execution in a mixed-market-impact Hawkes price model," Post-Print hal-00971369, HAL.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thibaut Mastrolia & Tianrui Xu, 2024. "Clearing time randomization and transaction fees for auction market design," Papers 2405.09764, arXiv.org, revised Oct 2024.
    2. Da Fonseca, José & Malevergne, Yannick, 2021. "A simple microstructure model based on the Cox-BESQ process with application to optimal execution policy," Journal of Economic Dynamics and Control, Elsevier, vol. 128(C).
    3. Guanxing Fu & Ulrich Horst & Xiaonyu Xia, 2020. "Portfolio Liquidation Games with Self-Exciting Order Flow," Papers 2011.05589, arXiv.org.
    4. Antoine Fosset & Jean-Philippe Bouchaud & Michael Benzaquen, 2020. "Non-parametric Estimation of Quadratic Hawkes Processes for Order Book Events," Papers 2005.05730, arXiv.org.
    5. A. Papanicolaou & H. Fu & P. Krishnamurthy & B. Healy & F. Khorrami, 2023. "An Optimal Control Strategy for Execution of Large Stock Orders Using LSTMs," Papers 2301.09705, arXiv.org, revised Jun 2023.
    6. Simon Clinet & Jean-Franc{c}ois Perreton & Serge Reydellet, 2021. "Optimal trading: a model predictive control approach," Papers 2110.11008, arXiv.org, revised Nov 2021.
    7. José Da Fonseca & Riadh Zaatour, 2017. "Correlation and Lead–Lag Relationships in a Hawkes Microstructure Model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 37(3), pages 260-285, March.
    8. Hadrien De March & Charles-Albert Lehalle, 2018. "Optimal trading using signals," Papers 1811.03718, arXiv.org.
    9. Fu, Guanxing & Horst, Ulrich & Xia, Xiaonyu, 2022. "Portfolio Liquidation Games with Self-Exciting Order Flow," Rationality and Competition Discussion Paper Series 327, CRC TRR 190 Rationality and Competition.
    10. Sadoghi, Amirhossein & Vecer, Jan, 2022. "Optimal liquidation problem in illiquid markets," European Journal of Operational Research, Elsevier, vol. 296(3), pages 1050-1066.
    11. Amirhossein Sadoghi & Jan Vecer, 2022. "Optimal liquidation problem in illiquid markets," Post-Print hal-03696768, HAL.
    12. Guanxing Fu & Ulrich Horst & Xiaonyu Xia, 2022. "A Mean-Field Control Problem of Optimal Portfolio Liquidation with Semimartingale Strategies," Papers 2207.00446, arXiv.org, revised Sep 2023.
    13. Antoine Fosset & Jean-Philippe Bouchaud & Michael Benzaquen, 2020. "Non-parametric Estimation of Quadratic Hawkes Processes for Order Book Events," Working Papers hal-02998555, HAL.
    14. Borland, Lisa, 2016. "Exploring the dynamics of financial markets: from stock prices to strategy returns," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 59-74.
    15. Antoine Fosset & Jean-Philippe Bouchaud & Michael Benzaquen, 2021. "Non-parametric Estimation of Quadratic Hawkes Processes for Order Book Events," Post-Print hal-02998555, HAL.
    16. Dupret, Jean-Loup & Hainaut, Donatien, 2023. "Optimal liquidation under indirect price impact with propagator," LIDAM Discussion Papers ISBA 2023012, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    17. Maxime Morariu-Patrichi & Mikko S. Pakkanen, 2017. "Hybrid marked point processes: characterisation, existence and uniqueness," Papers 1707.06970, arXiv.org, revised Oct 2018.
    18. Ingemar Kaj & Mine Caglar, 2017. "A buffer Hawkes process for limit order books," Papers 1710.03506, arXiv.org.
    19. Paul Jusselin, 2020. "Optimal market making with persistent order flow," Papers 2003.05958, arXiv.org, revised Oct 2020.
    20. Peter Bank & 'Alvaro Cartea & Laura Korber, 2023. "Optimal execution and speculation with trade signals," Papers 2306.00621, arXiv.org, revised Dec 2024.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2012.15705. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.