IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2012.06173.html
   My bibliography  Save this paper

Portfolio optimization with two quasiconvex risk measures

Author

Listed:
  • c{C}au{g}{i}n Ararat

Abstract

We study a static portfolio optimization problem with two risk measures: a principle risk measure in the objective function and a secondary risk measure whose value is controlled in the constraints. This problem is of interest when it is necessary to consider the risk preferences of two parties, such as a portfolio manager and a regulator, at the same time. A special case of this problem where the risk measures are assumed to be coherent (positively homogeneous) is studied recently in a joint work of the author. The present paper extends the analysis to a more general setting by assuming that the two risk measures are only quasiconvex. First, we study the case where the principal risk measure is convex. We introduce a dual problem, show that there is zero duality gap between the portfolio optimization problem and the dual problem, and finally identify a condition under which the Lagrange multiplier associated to the dual problem at optimality gives an optimal portfolio. Next, we study the general case without the convexity assumption and show that an approximately optimal solution with prescribed optimality gap can be achieved by using the well-known bisection algorithm combined with a duality result that we prove.

Suggested Citation

  • c{C}au{g}{i}n Ararat, 2020. "Portfolio optimization with two quasiconvex risk measures," Papers 2012.06173, arXiv.org.
  • Handle: RePEc:arx:papers:2012.06173
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2012.06173
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tahsin Deniz Aktürk & Çağın Ararat, 2020. "Portfolio optimization with two coherent risk measures," Journal of Global Optimization, Springer, vol. 78(3), pages 597-626, November.
    2. Tahsin Deniz Akturk & c{C}au{g}{i}n Ararat, 2019. "Portfolio optimization with two coherent risk measures," Papers 1903.10454, arXiv.org, revised Jul 2020.
    3. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    4. Samuel Drapeau & Michael Kupper, 2013. "Risk Preferences and Their Robust Representation," Mathematics of Operations Research, INFORMS, vol. 38(1), pages 28-62, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Wei & Xu, Huifu & Ma, Tiejun, 2023. "Optimal scenario-dependent multivariate shortfall risk measure and its application in risk capital allocation," European Journal of Operational Research, Elsevier, vol. 306(1), pages 322-347.
    2. Wentao Hu & Cuixia Chen & Yufeng Shi & Ze Chen, 2022. "A Tail Measure With Variable Risk Tolerance: Application in Dynamic Portfolio Insurance Strategy," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 831-874, June.
    3. Elisa Mastrogiacomo & Emanuela Rosazza Gianin, 2019. "Time-consistency of risk measures: how strong is such a property?," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(1), pages 287-317, June.
    4. Bazovkin, Pavel, 2014. "Geometrical framework for robust portfolio optimization," Discussion Papers in Econometrics and Statistics 01/14, University of Cologne, Institute of Econometrics and Statistics.
    5. Niushan Gao & Cosimo Munari, 2017. "Surplus-invariant risk measures," Papers 1707.04949, arXiv.org, revised May 2018.
    6. Acciaio Beatrice & Svindland Gregor, 2013. "Are law-invariant risk functions concave on distributions?," Dependence Modeling, De Gruyter, vol. 1(2013), pages 54-64, December.
    7. Cosimo Munari & Stefan Weber & Lutz Wilhelmy, 2023. "Capital requirements and claims recovery: A new perspective on solvency regulation," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 90(2), pages 329-380, June.
    8. Righi, Marcelo Brutti, 2024. "Star-shaped acceptability indexes," Insurance: Mathematics and Economics, Elsevier, vol. 117(C), pages 170-181.
    9. Niushan Gao & Cosimo Munari, 2020. "Surplus-Invariant Risk Measures," Mathematics of Operations Research, INFORMS, vol. 45(4), pages 1342-1370, November.
    10. Tolulope Fadina & Yang Liu & Ruodu Wang, 2021. "A Framework for Measures of Risk under Uncertainty," Papers 2110.10792, arXiv.org, revised Sep 2023.
    11. Shengzhong Chen & Niushan Gao & Denny Leung & Lei Li, 2021. "Automatic Fatou Property of Law-invariant Risk Measures," Papers 2107.08109, arXiv.org, revised Jan 2022.
    12. Maria Arduca & Cosimo Munari, 2021. "Risk measures beyond frictionless markets," Papers 2111.08294, arXiv.org.
    13. Ola Mahmoud, 2015. "The Temporal Dimension of Risk," Papers 1501.01573, arXiv.org, revised Jun 2016.
    14. Tomasz R. Bielecki & Igor Cialenco & Tao Chen, 2014. "Dynamic Conic Finance via Backward Stochastic Difference Equations," Papers 1412.6459, arXiv.org, revised Dec 2014.
    15. Sigrid Källblad, 2017. "Risk- and ambiguity-averse portfolio optimization with quasiconcave utility functionals," Finance and Stochastics, Springer, vol. 21(2), pages 397-425, April.
    16. Yannick Armenti & Stéphane Crépey & Samuel Drapeau & Antonis Papapantoleon, 2018. "Multivariate Shortfall Risk Allocation and Systemic Risk," Working Papers hal-01764398, HAL.
    17. Enrico G. De Giorgi & Ola Mahmoud, 2016. "Diversification preferences in the theory of choice," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 39(2), pages 143-174, November.
    18. Xia Han & Qiuqi Wang & Ruodu Wang & Jianming Xia, 2021. "Cash-subadditive risk measures without quasi-convexity," Papers 2110.12198, arXiv.org, revised May 2024.
    19. Andreas H Hamel, 2018. "Monetary Measures of Risk," Papers 1812.04354, arXiv.org.
    20. Moti Michaeli, 2014. "Riskiness for sets of gambles," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 56(3), pages 515-547, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2012.06173. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.