IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2011.14809.html
   My bibliography  Save this paper

Collective dynamics of stock market efficiency

Author

Listed:
  • Luiz G. A. Alves
  • Higor Y. D. Sigaki
  • Matjaz Perc
  • Haroldo V. Ribeiro

Abstract

Summarized by the efficient market hypothesis, the idea that stock prices fully reflect all available information is always confronted with the behavior of real-world markets. While there is plenty of evidence indicating and quantifying the efficiency of stock markets, most studies assume this efficiency to be constant over time so that its dynamical and collective aspects remain poorly understood. Here we define the time-varying efficiency of stock markets by calculating the permutation entropy within sliding time-windows of log-returns of stock market indices. We show that major world stock markets can be hierarchically classified into several groups that display similar long-term efficiency profiles. However, we also show that efficiency ranks and clusters of markets with similar trends are only stable for a few months at a time. We thus propose a network representation of stock markets that aggregates their short-term efficiency patterns into a global and coherent picture. We find this financial network to be strongly entangled while also having a modular structure that consists of two distinct groups of stock markets. Our results suggest that stock market efficiency is a collective phenomenon that can drive its operation at a high level of informational efficiency, but also places the entire system under risk of failure.

Suggested Citation

  • Luiz G. A. Alves & Higor Y. D. Sigaki & Matjaz Perc & Haroldo V. Ribeiro, 2020. "Collective dynamics of stock market efficiency," Papers 2011.14809, arXiv.org.
  • Handle: RePEc:arx:papers:2011.14809
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2011.14809
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Parameswaran Gopikrishnan & Vasiliki Plerou & Luis A. Nunes Amaral & Martin Meyer & H. Eugene Stanley, 1999. "Scaling of the distribution of fluctuations of financial market indices," Papers cond-mat/9905305, arXiv.org.
    2. Zunino, Luciano & Zanin, Massimiliano & Tabak, Benjamin M. & Pérez, Darío G. & Rosso, Osvaldo A., 2009. "Forbidden patterns, permutation entropy and stock market inefficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(14), pages 2854-2864.
    3. Szarek, Dawid & Bielak, Łukasz & Wyłomańska, Agnieszka, 2020. "Long-term prediction of the metals’ prices using non-Gaussian time-inhomogeneous stochastic process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
    4. Zhang, Wei & Wang, Pengfei & Li, Xiao & Shen, Dehua, 2018. "The inefficiency of cryptocurrency and its cross-correlation with Dow Jones Industrial Average," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 658-670.
    5. Burton G. Malkiel, 2003. "The Efficient Market Hypothesis and Its Critics," Working Papers 111, Princeton University, Department of Economics, Center for Economic Policy Studies..
    6. Rocha Filho, Tareísio M. & Rocha, Paulo M.M., 2020. "Evidence of inefficiency of the Brazilian stock market: The IBOVESPA future contracts," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 543(C).
    7. Urquhart, Andrew, 2016. "The inefficiency of Bitcoin," Economics Letters, Elsevier, vol. 148(C), pages 80-82.
    8. Bariviera, Aurelio F. & Basgall, María José & Hasperué, Waldo & Naiouf, Marcelo, 2017. "Some stylized facts of the Bitcoin market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 484(C), pages 82-90.
    9. repec:pri:cepsud:91malkiel is not listed on IDEAS
    10. Stanley, H.E. & Amaral, L.A.N. & Gabaix, X. & Gopikrishnan, P. & Plerou, V., 2001. "Similarities and differences between physics and economics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 1-15.
    11. Zunino, Luciano & Zanin, Massimiliano & Tabak, Benjamin M. & Pérez, Darío G. & Rosso, Osvaldo A., 2010. "Complexity-entropy causality plane: A useful approach to quantify the stock market inefficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(9), pages 1891-1901.
    12. Mantegna,Rosario N. & Stanley,H. Eugene, 2007. "Introduction to Econophysics," Cambridge Books, Cambridge University Press, number 9780521039871, October.
    13. Sánchez-Granero, M.A. & Balladares, K.A. & Ramos-Requena, J.P. & Trinidad-Segovia, J.E., 2020. "Testing the efficient market hypothesis in Latin American stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    14. Alvarez-Ramirez, J. & Rodriguez, E. & Ibarra-Valdez, C., 2018. "Long-range correlations and asymmetry in the Bitcoin market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 948-955.
    15. Higor Y. D. Sigaki & Matjaz Perc & Haroldo V. Ribeiro, 2019. "Clustering patterns in efficiency and the coming-of-age of the cryptocurrency market," Papers 1901.04967, arXiv.org.
    16. Wang, Lei & Liu, Lutao, 2020. "Long-range correlation and predictability of Chinese stock prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    17. L. Zunino & B. M. Tabak & D. G. Pérez & M. Garavaglia & O. A. Rosso, 2007. "Inefficiency in Latin-American market indices," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 60(1), pages 111-121, November.
    18. Zunino, Luciano & Fernández Bariviera, Aurelio & Guercio, M. Belén & Martinez, Lisana B. & Rosso, Osvaldo A., 2012. "On the efficiency of sovereign bond markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(18), pages 4342-4349.
    19. Nadarajah, Saralees & Chu, Jeffrey, 2017. "On the inefficiency of Bitcoin," Economics Letters, Elsevier, vol. 150(C), pages 6-9.
    20. Danilo Delpini & Stefano Battiston & Guido Caldarelli & Massimo Riccaboni, 2019. "Systemic risk from investment similarities," PLOS ONE, Public Library of Science, vol. 14(5), pages 1-15, May.
    21. Thorben Funke & Till Becker, 2019. "Stochastic block models: A comparison of variants and inference methods," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-40, April.
    22. Burton G. Malkiel, 2003. "The Efficient Market Hypothesis and Its Critics," Journal of Economic Perspectives, American Economic Association, vol. 17(1), pages 59-82, Winter.
    23. Aurelio F. Bariviera & Luciano Zunino & Osvaldo A. Rosso, 2018. "An analysis of high-frequency cryptocurrencies prices dynamics using permutation-information-theory quantifiers," Papers 1808.01926, arXiv.org.
    24. Burton G. Malkiel, 2003. "The Efficient Market Hypothesis and Its Critics," Working Papers 111, Princeton University, Department of Economics, Center for Economic Policy Studies..
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lee, Min-Jae & Choi, Sun-Yong, 2024. "Insights into the dynamics of market efficiency spillover of financial assets in different equity markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 641(C).
    2. Riaz, Zahid & Ray, Pradeep & Ray, Sangeeta, 2022. "The impact of digitalisation on corporate governance in Australia," Journal of Business Research, Elsevier, vol. 152(C), pages 410-424.
    3. M., Krishnadas & Harikrishnan, K.P. & Ambika, G., 2022. "Recurrence measures and transitions in stock market dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    4. James, Nick & Menzies, Max, 2023. "Collective infectivity of the pandemic over time and association with vaccine coverage and economic development," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    5. Luo, Yi & Li, Xiaoming & Yu, Wei & Huang, Kun & Yang, Yihe & Huang, Yao, 2024. "Research on human dynamics characteristics under large-scale stock data perturbation," The North American Journal of Economics and Finance, Elsevier, vol. 70(C).
    6. Iqbal, Javid & Saeed, Abubakr, 2023. "Managerial sentiments, non-performing loans, and banks financial performance: A causal mediation approach," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    7. Hakan Pabuccu & Adrian Barbu, 2024. "Feature selection with annealing for forecasting financial time series," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-26, December.
    8. James, Nick & Menzies, Max & Chok, James & Milner, Aaron & Milner, Cas, 2023. "Geometric persistence and distributional trends in worldwide terrorism," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    9. Choi, Sun-Yong, 2021. "Analysis of stock market efficiency during crisis periods in the US stock market: Differences between the global financial crisis and COVID-19 pandemic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    10. Shahriari, Zahra & Nazarimehr, Fahimeh & Rajagopal, Karthikeyan & Jafari, Sajad & Perc, Matjaž & Svetec, Milan, 2022. "Cryptocurrency price analysis with ordinal partition networks," Applied Mathematics and Computation, Elsevier, vol. 430(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Higor Y. D. Sigaki & Matjaz Perc & Haroldo V. Ribeiro, 2019. "Clustering patterns in efficiency and the coming-of-age of the cryptocurrency market," Papers 1901.04967, arXiv.org.
    2. Carmen López-Martín & Sonia Benito Muela & Raquel Arguedas, 2021. "Efficiency in cryptocurrency markets: new evidence," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 11(3), pages 403-431, September.
    3. Paul Handro & Bogdan Dima, 2024. "Analyzing Financial Markets Efficiency: Insights from a Bibliometric and Content Review," Journal of Financial Studies, Institute of Financial Studies, vol. 16(9), pages 119-175, May.
    4. Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
    5. Rasim Özcan & Asad ul Islam KHAN & Sundas Iftikhar, 2024. "Whether The Cr Whether The Crypto Market Is Efficient? E et Is Efficient? Evidence F vidence From Testing The Validity Of The Efficient Market Hypothesis," Bulletin of Monetary Economics and Banking, Bank Indonesia, vol. 27(1), pages 113-132, March.
    6. Kostanjcar, Zvonko & Jeren, Branko & Juretic, Zeljan, 2012. "Impact of uncertainty in expected return estimation on stock price volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5563-5571.
    7. Bennett, Donyetta & Mekelburg, Erik & Williams, T.H., 2023. "BeFi meets DeFi: A behavioral finance approach to decentralized finance asset pricing," Research in International Business and Finance, Elsevier, vol. 65(C).
    8. V Dimitrova & M Fernández-Martínez & M A Sánchez-Granero & J E Trinidad Segovia, 2019. "Some comments on Bitcoin market (in)efficiency," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-14, July.
    9. Aggarwal, Divya & Chandrasekaran, Shabana & Annamalai, Balamurugan, 2020. "A complete empirical ensemble mode decomposition and support vector machine-based approach to predict Bitcoin prices," Journal of Behavioral and Experimental Finance, Elsevier, vol. 27(C).
    10. Stosic, Darko & Stosic, Dusan & Ludermir, Teresa B. & Stosic, Tatijana, 2019. "Exploring disorder and complexity in the cryptocurrency space," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 548-556.
    11. Li, Mu-Yao & Cai, Qing & Gu, Gao-Feng & Zhou, Wei-Xing, 2019. "Exponentially decayed double power-law distribution of Bitcoin trade sizes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    12. Nikolaos A. Kyriazis, 2019. "A Survey on Efficiency and Profitable Trading Opportunities in Cryptocurrency Markets," JRFM, MDPI, vol. 12(2), pages 1-17, April.
    13. Jiang, Jiaqi & Gu, Rongbao, 2016. "Using Rényi parameter to improve the predictive power of singular value decomposition entropy on stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 448(C), pages 254-264.
    14. Siokis, Fotios M., 2018. "Credit market Jitters in the course of the financial crisis: A permutation entropy approach in measuring informational efficiency in financial assets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 266-275.
    15. Sensoy, Ahmet & Aras, Guler & Hacihasanoglu, Erk, 2015. "Predictability dynamics of Islamic and conventional equity markets," The North American Journal of Economics and Finance, Elsevier, vol. 31(C), pages 222-248.
    16. Ferreira, Paulo & Kristoufek, Ladislav & Pereira, Eder Johnson de Area Leão, 2020. "DCCA and DMCA correlations of cryptocurrency markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    17. Cynthia Weiyi Cai & Rui Xue & Bi Zhou, 2023. "Cryptocurrency puzzles: a comprehensive review and re-introduction," Journal of Accounting Literature, Emerald Group Publishing Limited, vol. 46(1), pages 26-50, June.
    18. Ata Assaf & Luis Alberiko Gil-Alana & Khaled Mokni, 2022. "True or spurious long memory in the cryptocurrency markets: evidence from a multivariate test and other Whittle estimation methods," Empirical Economics, Springer, vol. 63(3), pages 1543-1570, September.
    19. Kakinaka, Shinji & Umeno, Ken, 2021. "Exploring asymmetric multifractal cross-correlations of price–volatility and asymmetric volatility dynamics in cryptocurrency markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    20. Muchnik, Lev & Bunde, Armin & Havlin, Shlomo, 2009. "Long term memory in extreme returns of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(19), pages 4145-4150.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2011.14809. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.