IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2011.04216.html
   My bibliography  Save this paper

DoWhy: An End-to-End Library for Causal Inference

Author

Listed:
  • Amit Sharma
  • Emre Kiciman

Abstract

In addition to efficient statistical estimators of a treatment's effect, successful application of causal inference requires specifying assumptions about the mechanisms underlying observed data and testing whether they are valid, and to what extent. However, most libraries for causal inference focus only on the task of providing powerful statistical estimators. We describe DoWhy, an open-source Python library that is built with causal assumptions as its first-class citizens, based on the formal framework of causal graphs to specify and test causal assumptions. DoWhy presents an API for the four steps common to any causal analysis---1) modeling the data using a causal graph and structural assumptions, 2) identifying whether the desired effect is estimable under the causal model, 3) estimating the effect using statistical estimators, and finally 4) refuting the obtained estimate through robustness checks and sensitivity analyses. In particular, DoWhy implements a number of robustness checks including placebo tests, bootstrap tests, and tests for unoberved confounding. DoWhy is an extensible library that supports interoperability with other implementations, such as EconML and CausalML for the the estimation step. The library is available at https://github.com/microsoft/dowhy

Suggested Citation

  • Amit Sharma & Emre Kiciman, 2020. "DoWhy: An End-to-End Library for Causal Inference," Papers 2011.04216, arXiv.org.
  • Handle: RePEc:arx:papers:2011.04216
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2011.04216
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018. "Double/debiased machine learning for treatment and structural parameters," Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
    2. Susan Athey & Guido W. Imbens, 2017. "The State of Applied Econometrics: Causality and Policy Evaluation," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 3-32, Spring.
    3. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey, 2017. "Double/Debiased/Neyman Machine Learning of Treatment Effects," American Economic Review, American Economic Association, vol. 107(5), pages 261-265, May.
    4. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2016. "Double/Debiased Machine Learning for Treatment and Causal Parameters," Papers 1608.00060, arXiv.org, revised Nov 2024.
    5. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jingyu Liang & Jie Liu, 2022. "Evaluation of Educational Interventions Based on Average Treatment Effect: A Case Study," Mathematics, MDPI, vol. 10(22), pages 1-18, November.
    2. Satyam Kumar & Yelleti Vivek & Vadlamani Ravi & Indranil Bose, 2023. "Causal Inference for Banking Finance and Insurance A Survey," Papers 2307.16427, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Valente, Marica, 2023. "Policy evaluation of waste pricing programs using heterogeneous causal effect estimation," Journal of Environmental Economics and Management, Elsevier, vol. 117(C).
    2. Anna Baiardi & Andrea A. Naghi, 2021. "The Value Added of Machine Learning to Causal Inference: Evidence from Revisited Studies," Papers 2101.00878, arXiv.org.
    3. Jiaming Mao & Jingzhi Xu, 2020. "Ensemble Learning with Statistical and Structural Models," Papers 2006.05308, arXiv.org.
    4. Anna Baiardi & Andrea A. Naghi, 2021. "The Value Added of Machine Learning to Causal Inference: Evidence from Revisited Studies," Tinbergen Institute Discussion Papers 21-001/V, Tinbergen Institute.
    5. Ruoxuan Xiong & Allison Koenecke & Michael Powell & Zhu Shen & Joshua T. Vogelstein & Susan Athey, 2021. "Federated Causal Inference in Heterogeneous Observational Data," Papers 2107.11732, arXiv.org, revised Apr 2023.
    6. Miruna Oprescu & Vasilis Syrgkanis & Zhiwei Steven Wu, 2018. "Orthogonal Random Forest for Causal Inference," Papers 1806.03467, arXiv.org, revised Sep 2019.
    7. Mark Kattenberg & Bas Scheer & Jurre Thiel, 2023. "Causal forests with fixed effects for treatment effect heterogeneity in difference-in-differences," CPB Discussion Paper 452, CPB Netherlands Bureau for Economic Policy Analysis.
    8. Victor Chernozhukov & Carlos Cinelli & Whitney Newey & Amit Sharma & Vasilis Syrgkanis, 2021. "Long Story Short: Omitted Variable Bias in Causal Machine Learning," Papers 2112.13398, arXiv.org, revised May 2024.
    9. Guido W. Imbens, 2020. "Potential Outcome and Directed Acyclic Graph Approaches to Causality: Relevance for Empirical Practice in Economics," Journal of Economic Literature, American Economic Association, vol. 58(4), pages 1129-1179, December.
    10. Yong Bian & Xiqian Wang & Qin Zhang, 2023. "How Does China's Household Portfolio Selection Vary with Financial Inclusion?," Papers 2311.01206, arXiv.org.
    11. Gazeaud, Jules & Khan, Nausheen & Mvukiyehe, Eric & Sterck, Olivier, 2023. "With or without him? Experimental evidence on cash grants and gender-sensitive trainings in Tunisia," Journal of Development Economics, Elsevier, vol. 165(C).
    12. Madadkhani, Shiva & Ikonnikova, Svetlana, 2024. "Toward high-resolution projection of electricity prices: A machine learning approach to quantifying the effects of high fuel and CO2 prices," Energy Economics, Elsevier, vol. 129(C).
    13. Dmitry Arkhangelsky & Guido Imbens, 2023. "Causal Models for Longitudinal and Panel Data: A Survey," Papers 2311.15458, arXiv.org, revised Jun 2024.
    14. Ganesh Karapakula, 2023. "Stable Probability Weighting: Large-Sample and Finite-Sample Estimation and Inference Methods for Heterogeneous Causal Effects of Multivalued Treatments Under Limited Overlap," Papers 2301.05703, arXiv.org, revised Jan 2023.
    15. Heigle, Julia & Pfeiffer, Friedhelm, 2019. "An analysis of selected labor market outcomes of college dropouts in Germany: A machine learning estimation approach. Research report," ZEW Expertises, ZEW - Leibniz Centre for European Economic Research, number 222378.
    16. Retsef Levi & Elisabeth Paulson & Georgia Perakis & Emily Zhang, 2024. "Heterogeneous Treatment Effects in Panel Data," Papers 2406.05633, arXiv.org.
    17. Phillip Heiler, 2020. "Efficient Covariate Balancing for the Local Average Treatment Effect," Papers 2007.04346, arXiv.org.
    18. Wang, Xiqian & Bian, Yong & Zhang, Qin, 2023. "The effect of cooking fuel choice on the elderly’s well-being: Evidence from two non-parametric methods," Energy Economics, Elsevier, vol. 125(C).
    19. Delprato, Marcos & Frola, Alessia & Antequera, Germán, 2022. "Indigenous and non-Indigenous proficiency gaps for out-of-school and in-school populations: A machine learning approach," International Journal of Educational Development, Elsevier, vol. 93(C).
    20. Mochen Yang & Edward McFowland & Gordon Burtch & Gediminas Adomavicius, 2022. "Achieving Reliable Causal Inference with Data-Mined Variables: A Random Forest Approach to the Measurement Error Problem," INFORMS Joural on Data Science, INFORMS, vol. 1(2), pages 138-155, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2011.04216. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.