IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb373/199731.html
   My bibliography  Save this paper

Optional decompositions under constraints

Author

Listed:
  • Föllmer, Hans
  • Kramkov, D. O.

Abstract

Motivated by a hedging problem in mathematical finance, El Karoui and Quenez [7] and Kramkov [14] have developed optional versions of the Doob-Meyer decomposition which hold simultaneously for all equivalent martingale measures. We investigate the general structure of such optional decompositions, both in additive and in multiplicative form, and under constraints corresponding to di_erent classes of equivalent measures. As an application, we extend results of Karatzas and Cvitanic [3] on hedging problems with constrained portfolios.

Suggested Citation

  • Föllmer, Hans & Kramkov, D. O., 1997. "Optional decompositions under constraints," SFB 373 Discussion Papers 1997,31, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
  • Handle: RePEc:zbw:sfb373:199731
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/66294/1/729289427.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. H. Föllmer & Y.M. Kabanov, 1997. "Optional decomposition and Lagrange multipliers," Finance and Stochastics, Springer, vol. 2(1), pages 69-81.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bank, Peter & Riedel, Frank, 1999. "Optimal consumption choice under uncertainty with intertemporal substitution," SFB 373 Discussion Papers 1999,71, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    2. Riedel, Frank, 2010. "Optimal Stopping under Ambiguity," Center for Mathematical Economics Working Papers 390, Center for Mathematical Economics, Bielefeld University.
    3. Hans Follmer & Alexander Schied, 2013. "Probabilistic aspects of finance," Papers 1309.7759, arXiv.org.
    4. Joao Amaro de Matos & Ana Lacerda, 2004. "Dry markets and superreplication bounds of American derivatives," Nova SBE Working Paper Series wp461, Universidade Nova de Lisboa, Nova School of Business and Economics.
    5. Frank Bosserhoff & Mitja Stadje, 2019. "Robustness of Delta Hedging in a Jump-Diffusion Model," Papers 1910.08946, arXiv.org, revised Apr 2022.
    6. Kohlmann, Michael & Niethammer, Christina R., 2007. "On convergence to the exponential utility problem," Stochastic Processes and their Applications, Elsevier, vol. 117(12), pages 1813-1834, December.
    7. Jun Sekine, 2012. "Long-term optimal portfolios with floor," Finance and Stochastics, Springer, vol. 16(3), pages 369-401, July.
    8. Alexander Chigodaev, 2016. "Recursive Method for Guaranteed Valuation of Options in Deterministic Game Theoretic Approach," HSE Working papers WP BRP 53/FE/2016, National Research University Higher School of Economics.
    9. Bruno Bouchard & Xiaolu Tan, 2021. "A quasi-sure optional decomposition and super-hedging result on the Skorokhod space," Finance and Stochastics, Springer, vol. 25(3), pages 505-528, July.
    10. Filipovic, Damir & Kupper, Michael, 2007. "Monotone and cash-invariant convex functions and hulls," Insurance: Mathematics and Economics, Elsevier, vol. 41(1), pages 1-16, July.
    11. Sabrina Mulinacci, 2011. "The efficient hedging problem for American options," Finance and Stochastics, Springer, vol. 15(2), pages 365-397, June.
    12. Mingxin Xu, 2006. "Risk measure pricing and hedging in incomplete markets," Annals of Finance, Springer, vol. 2(1), pages 51-71, January.
    13. Karim El Moutaouakil & Abdellatif El Ouissari & Vasile Palade & Anas Charroud & Adrian Olaru & Hicham Baïzri & Saliha Chellak & Mouna Cheggour, 2023. "Multi-Objective Optimization for Controlling the Dynamics of the Diabetic Population," Mathematics, MDPI, vol. 11(13), pages 1-28, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb373:199731. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/sfhubde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.