Tight Bounds for a Class of Data-Driven Distributionally Robust Risk Measures
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Ioana Popescu, 2005. "A Semidefinite Programming Approach to Optimal-Moment Bounds for Convex Classes of Distributions," Mathematics of Operations Research, INFORMS, vol. 30(3), pages 632-657, August.
- James E. Smith, 1995. "Generalized Chebychev Inequalities: Theory and Applications in Decision Analysis," Operations Research, INFORMS, vol. 43(5), pages 807-825, October.
- Derek Singh & Shuzhong Zhang, 2019. "Distributionally Robust XVA via Wasserstein Distance Part 2: Wrong Way Funding Risk," Papers 1910.03993, arXiv.org.
- Dimitris Bertsimas & Ioana Popescu, 2002. "On the Relation Between Option and Stock Prices: A Convex Optimization Approach," Operations Research, INFORMS, vol. 50(2), pages 358-374, April.
- Li Chen & Simai He & Shuzhong Zhang, 2011. "Tight Bounds for Some Risk Measures, with Applications to Robust Portfolio Selection," Operations Research, INFORMS, vol. 59(4), pages 847-865, August.
- Keiiti Isii, 1960. "The extrema of probability determined by generalized moments (I) bounded random variables," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 12(2), pages 119-134, June.
- Derek Singh & Shuzhong Zhang, 2020. "Distributionally Robust Profit Opportunities," Papers 2006.11279, arXiv.org.
- Lo, Andrew W., 1987. "Semi-parametric upper bounds for option prices and expected payoffs," Journal of Financial Economics, Elsevier, vol. 19(2), pages 373-387, December.
- Simai He & Jiawei Zhang & Shuzhong Zhang, 2010. "Bounding Probability of Small Deviation: A Fourth Moment Approach," Mathematics of Operations Research, INFORMS, vol. 35(1), pages 208-232, February.
- Luis F. Zuluaga & Javier F. Peña, 2005. "A Conic Programming Approach to Generalized Tchebycheff Inequalities," Mathematics of Operations Research, INFORMS, vol. 30(2), pages 369-388, May.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Derek Singh & Shuzhong Zhang, 2020. "Distributionally Robust Newsvendor with Moment Constraints," Papers 2010.16369, arXiv.org.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zuluaga, Luis F. & Peña, Javier & Du, Donglei, 2009. "Third-order extensions of Lo's semiparametric bound for European call options," European Journal of Operational Research, Elsevier, vol. 198(2), pages 557-570, October.
- Li Chen & Simai He & Shuzhong Zhang, 2011. "Tight Bounds for Some Risk Measures, with Applications to Robust Portfolio Selection," Operations Research, INFORMS, vol. 59(4), pages 847-865, August.
- Wong, Man Hong & Zhang, Shuzhong, 2013. "Computing best bounds for nonlinear risk measures with partial information," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 204-212.
- van Eekelen, Wouter, 2023. "Distributionally robust views on queues and related stochastic models," Other publications TiSEM 9b99fc05-9d68-48eb-ae8c-9, Tilburg University, School of Economics and Management.
- Robert Howley & Robert Storer & Juan Vera & Luis F. Zuluaga, 2016. "Computing semiparametric bounds on the expected payments of insurance instruments via column generation," Papers 1601.02149, arXiv.org.
- Georgia Perakis & Guillaume Roels, 2008. "Regret in the Newsvendor Model with Partial Information," Operations Research, INFORMS, vol. 56(1), pages 188-203, February.
- Liu, Guoqing & Li, Wenbo V., 2009. "Moment bounds for truncated random variables," Statistics & Probability Letters, Elsevier, vol. 79(18), pages 1951-1956, September.
- Wong, Man Hong & Zhang, Shuzhong, 2014. "On distributional robust probability functions and their computations," European Journal of Operational Research, Elsevier, vol. 233(1), pages 23-33.
- Didier Henrion & Felix Kirschner & Etienne De Klerk & Milan Korda & Jean-Bernard Lasserre & Victor Magron, 2023. "Revisiting Semidefinite Programming Approaches to Options Pricing: Complexity and Computational Perspectives," INFORMS Journal on Computing, INFORMS, vol. 35(2), pages 335-349, March.
- Li, Xiaobo & Natarajan, Karthik & Teo, Chung-Piaw & Zheng, Zhichao, 2014. "Distributionally robust mixed integer linear programs: Persistency models with applications," European Journal of Operational Research, Elsevier, vol. 233(3), pages 459-473.
- Villegas, Andrés M. & Medaglia, Andrés L. & Zuluaga, Luis F., 2012. "Computing bounds on the expected payoff of Alternative Risk Transfer products," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 271-281.
- Kirschner, Felix, 2023. "Conic optimization with applications in finance and approximation theory," Other publications TiSEM e9bef4a5-ee46-45be-90d7-9, Tilburg University, School of Economics and Management.
- Dimitris Bertsimas & Ioana Popescu, 2002. "On the Relation Between Option and Stock Prices: A Convex Optimization Approach," Operations Research, INFORMS, vol. 50(2), pages 358-374, April.
- Luis F. Zuluaga & Javier F. Peña, 2005. "A Conic Programming Approach to Generalized Tchebycheff Inequalities," Mathematics of Operations Research, INFORMS, vol. 30(2), pages 369-388, May.
- J. A. Primbs, 2010. "SDP Relaxation of Arbitrage Pricing Bounds Based on Option Prices and Moments," Journal of Optimization Theory and Applications, Springer, vol. 144(1), pages 137-155, January.
- Ioana Popescu, 2005. "A Semidefinite Programming Approach to Optimal-Moment Bounds for Convex Classes of Distributions," Mathematics of Operations Research, INFORMS, vol. 30(3), pages 632-657, August.
- Simai He & Jiawei Zhang & Shuzhong Zhang, 2010. "Bounding Probability of Small Deviation: A Fourth Moment Approach," Mathematics of Operations Research, INFORMS, vol. 35(1), pages 208-232, February.
- Zhi Chen & Melvyn Sim & Huan Xu, 2019. "Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," Operations Research, INFORMS, vol. 67(5), pages 1328-1344, September.
- Javier Pena & Juan Vera & Luis Zuluaga, 2010. "Static-arbitrage lower bounds on the prices of basket options via linear programming," Quantitative Finance, Taylor & Francis Journals, vol. 10(8), pages 819-827.
- repec:dau:papers:123456789/30 is not listed on IDEAS
- Shao, Hui, 2017. "Decomposing aggregate risk into marginal risks under partial information: A top-down method," Statistics & Probability Letters, Elsevier, vol. 124(C), pages 97-100.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-RMG-2020-11-09 (Risk Management)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2010.05398. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.