IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2010.01157.html
   My bibliography  Save this paper

Gold Standard Pairs Trading Rules: Are They Valid?

Author

Listed:
  • Miroslav Fil

Abstract

Pairs trading is a strategy based on exploiting mean reversion in prices of securities. It has been shown to generate significant excess returns, but its profitability has dropped significantly in recent periods. We employ the most common distance and cointegration methods on US equities from 1990 to 2020 including the Covid-19 crisis. The strategy overall fails to outperform the market benchmark even with hyperparameter tuning, but it performs very strongly during bear markets. Furthermore, we demonstrate that market factors have a strong relationship with the optimal parametrization for the strategy, and adjustments are appropriate for modern market conditions.

Suggested Citation

  • Miroslav Fil, 2020. "Gold Standard Pairs Trading Rules: Are They Valid?," Papers 2010.01157, arXiv.org.
  • Handle: RePEc:arx:papers:2010.01157
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2010.01157
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    2. Binh Do & Robert Faff, 2012. "Are Pairs Trading Profits Robust To Trading Costs?," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 35(2), pages 261-287, June.
    3. Jacobs, Heiko & Weber, Martin, 2015. "On the determinants of pairs trading profitability," Journal of Financial Markets, Elsevier, vol. 23(C), pages 75-97.
    4. Christopher Krauss, 2017. "Statistical Arbitrage Pairs Trading Strategies: Review And Outlook," Journal of Economic Surveys, Wiley Blackwell, vol. 31(2), pages 513-545, April.
    5. Nicolas Huck, 2013. "The high sensitivity of pairs trading returns," Applied Economics Letters, Taylor & Francis Journals, vol. 20(14), pages 1301-1304, September.
    6. Nicolas Huck, 2013. "The high sensitivity of pairs trading returns," Post-Print hal-01369286, HAL.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Krauss, Christopher, 2015. "Statistical arbitrage pairs trading strategies: Review and outlook," FAU Discussion Papers in Economics 09/2015, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    2. Marianna Brunetti & Roberta de Luca, 2022. "Sensitivity of profitability in cointegration-based pairs trading," Centro Studi di Banca e Finanza (CEFIN) (Center for Studies in Banking and Finance) 0090, Universita di Modena e Reggio Emilia, Dipartimento di Economia "Marco Biagi".
    3. Vladim'ir Hol'y & Petra Tomanov'a, 2018. "Estimation of Ornstein-Uhlenbeck Process Using Ultra-High-Frequency Data with Application to Intraday Pairs Trading Strategy," Papers 1811.09312, arXiv.org, revised Jul 2022.
    4. Marianna Brunetti & Roberta De Luca, 2023. "Pre-selection in cointegration-based pairs trading," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(5), pages 1611-1640, December.
    5. Zhe Huang & Franck Martin, 2017. "Optimal pairs trading strategies in a cointegration framework," Working Papers halshs-01566803, HAL.
    6. Flori, Andrea & Regoli, Daniele, 2021. "Revealing Pairs-trading opportunities with long short-term memory networks," European Journal of Operational Research, Elsevier, vol. 295(2), pages 772-791.
    7. Laila Taskeen Qazi & Atta Ur Rahman & Saleem Gul, 2015. "Which Pairs of Stocks should we Trade? Selection of Pairs for Statistical Arbitrage and Pairs Trading in Karachi Stock Exchange," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 54(3), pages 215-244.
    8. Andreas Mikkelsen, 2018. "Pairs trading: the case of Norwegian seafood companies," Applied Economics, Taylor & Francis Journals, vol. 50(3), pages 303-318, January.
    9. Clegg, Matthew & Krauss, Christopher, 2016. "Pairs trading with partial cointegration," FAU Discussion Papers in Economics 05/2016, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    10. Marianna Brunetti & Roberta De Luca, 2023. "Pairs trading in the index options market," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 13(1), pages 145-173, March.
    11. Danni Chen & Jing Cui & Yan Gao & Leilei Wu, 2017. "Pairs trading in Chinese commodity futures markets: an adaptive cointegration approach," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 57(5), pages 1237-1264, December.
    12. Sánchez-Granero, M.A. & Balladares, K.A. & Ramos-Requena, J.P. & Trinidad-Segovia, J.E., 2020. "Testing the efficient market hypothesis in Latin American stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    13. GholamReza Keshavarz Haddad & Hassan Talebi, 2023. "The profitability of pair trading strategy in stock markets: Evidence from Toronto stock exchange," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(1), pages 193-207, January.
    14. Han, Chulwoo & He, Zhaodong & Toh, Alenson Jun Wei, 2023. "Pairs trading via unsupervised learning," European Journal of Operational Research, Elsevier, vol. 307(2), pages 929-947.
    15. Weiguang Han & Boyi Zhang & Qianqian Xie & Min Peng & Yanzhao Lai & Jimin Huang, 2023. "Select and Trade: Towards Unified Pair Trading with Hierarchical Reinforcement Learning," Papers 2301.10724, arXiv.org, revised Feb 2023.
    16. Wang, Jai-Jen & Lee, Jin-Ping & Zhao, Yang, 2018. "Pair-trading profitability and short-selling restriction: Evidence from the Taiwan stock market," International Review of Economics & Finance, Elsevier, vol. 55(C), pages 173-184.
    17. Boming Ning & Kiseop Lee, 2024. "Advanced Statistical Arbitrage with Reinforcement Learning," Papers 2403.12180, arXiv.org.
    18. Anna Bykhovskaya & Vadim Gorin, 2020. "Cointegration in large VARs," Papers 2006.14179, arXiv.org, revised Dec 2021.
    19. Fenghui Yu & Wai-Ki Ching & Chufang Wu & Jia-Wen Gu, 2023. "Optimal Pairs Trading Strategies: A Stochastic Mean–Variance Approach," Journal of Optimization Theory and Applications, Springer, vol. 196(1), pages 36-55, January.
    20. Ziping Zhao & Rui Zhou & Zhongju Wang & Daniel P. Palomar, 2018. "Optimal Portfolio Design for Statistical Arbitrage in Finance," Papers 1803.02974, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2010.01157. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.