IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2009.06960.html
   My bibliography  Save this paper

COVID-19 Impact on Global Maritime Mobility

Author

Listed:
  • Leonardo M. Millefiori
  • Paolo Braca
  • Dimitris Zissis
  • Giannis Spiliopoulos
  • Stefano Marano
  • Peter K. Willett
  • Sandro Carniel

Abstract

To prevent the outbreak of the Coronavirus disease (COVID-19), many countries around the world went into lockdown and imposed unprecedented containment measures. These restrictions progressively produced changes to social behavior and global mobility patterns, evidently disrupting social and economic activities. Here, using maritime traffic data collected via a global network of AIS receivers, we analyze the effects that the COVID-19 pandemic and containment measures had on the shipping industry, which accounts alone for more than 80% of the world trade. We rely on multiple data-driven maritime mobility indexes to quantitatively assess ship mobility in a given unit of time. The mobility analysis here presented has a worldwide extent and is based on the computation of: CNM of all ships reporting their position and navigational status via AIS, number of active and idle ships, and fleet average speed. To highlight significant changes in shipping routes and operational patterns, we also compute and compare global and local density maps. We compare 2020 mobility levels to those of previous years assuming that an unchanged growth rate would have been achieved, if not for COVID-19. Following the outbreak, we find an unprecedented drop in maritime mobility, across all categories of commercial shipping. With few exceptions, a generally reduced activity is observable from March to June, when the most severe restrictions were in force. We quantify a variation of mobility between -5.62% and -13.77% for container ships, between +2.28% and -3.32% for dry bulk, between -0.22% and -9.27% for wet bulk, and between -19.57% and -42.77% for passenger traffic. This study is unprecedented for the uniqueness and completeness of the employed dataset, which comprises a trillion AIS messages broadcast worldwide by 50000 ships, a figure that closely parallels the documented size of the world merchant fleet.

Suggested Citation

  • Leonardo M. Millefiori & Paolo Braca & Dimitris Zissis & Giannis Spiliopoulos & Stefano Marano & Peter K. Willett & Sandro Carniel, 2020. "COVID-19 Impact on Global Maritime Mobility," Papers 2009.06960, arXiv.org, revised Mar 2021.
  • Handle: RePEc:arx:papers:2009.06960
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2009.06960
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anthony Sardain & Erik Sardain & Brian Leung, 2019. "Global forecasts of shipping traffic and biological invasions to 2050," Nature Sustainability, Nature, vol. 2(4), pages 274-282, April.
    2. Zhang, Liye & Meng, Qiang & Fang Fwa, Tien, 2019. "Big AIS data based spatial-temporal analyses of ship traffic in Singapore port waters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 129(C), pages 287-304.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karim Gazzeh & Ismaila Rimi Abubakar & Emad Hammad, 2022. "Impacts of COVID-19 Pandemic on the Global Flows of People and Goods: Implications on the Dynamics of Urban Systems," Land, MDPI, vol. 11(3), pages 1-18, March.
    2. Zhao, Chuan & Li, Xin & Zuo, Min & Mo, Lipo & Yang, Changchun, 2022. "Spatiotemporal dynamic network for regional maritime vessel flow prediction amid COVID-19," Transport Policy, Elsevier, vol. 129(C), pages 78-89.
    3. Umezaki,So & Uemura,Jinichi, 2023. "Air and maritime transport connectivity during Covid-19 pandemic," IDE Discussion Papers 886, Institute of Developing Economies, Japan External Trade Organization(JETRO).
    4. Ahmed Karam & Abdelrahman E. E. Eltoukhy & Ibrahim Abdelfadeel Shaban & El-Awady Attia, 2022. "A Review of COVID-19-Related Literature on Freight Transport: Impacts, Mitigation Strategies, Recovery Measures, and Future Research Directions," IJERPH, MDPI, vol. 19(19), pages 1-27, September.
    5. Gianandrea Mannarini & Mario Leonardo Salinas & Lorenzo Carelli & Alessandro Fassò, 2022. "How COVID-19 Affected GHG Emissions of Ferries in Europe," Sustainability, MDPI, vol. 14(9), pages 1-19, April.
    6. Wei Luo & Siyuan Kang & Sheng Hu & Lixian Su & Rui Dai, 2023. "Dual Effects of the US-China Trade War and COVID-19 on United States Imports: Transfer of China's industrial chain?," Papers 2309.02271, arXiv.org.
    7. Chu, Zhong & Yan, Ran & Wang, Shuaian, 2024. "Are vessel arrival and port operations affected by COVID-19? Evidence from the Hong Kong port," Transport Policy, Elsevier, vol. 154(C), pages 157-181.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaofang Wu & Zhi Huang, 2024. "Estimating the costs and external benefits of reducing shipping-induced air pollution: a case study of Xiamen Harbour, China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(11), pages 28785-28808, November.
    2. Jiang, Meizhi & Lu, Jing, 2020. "The analysis of maritime piracy occurred in Southeast Asia by using Bayesian network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 139(C).
    3. Eisuke Watanabe & Ryuichi Shibasaki, 2023. "Extraction of Bunkering Services from Automatic Identification System Data and Their International Comparisons," Sustainability, MDPI, vol. 15(24), pages 1-19, December.
    4. Yang, Zhisen & Wan, Chengpeng & Yu, Qing & Yin, Jingbo & Yang, Zaili, 2023. "A machine learning-based Bayesian model for predicting the duration of ship detention in PSC inspection," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 180(C).
    5. Sugrue, Dennis & Adriaens, Peter, 2021. "A data fusion approach to predict shipping efficiency for bulk carriers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    6. Jin, Lianjie & Chen, Jing & Chen, Zilin & Sun, Xiangjun & Yu, Bin, 2022. "Impact of COVID-19 on China's international liner shipping network based on AIS data," Transport Policy, Elsevier, vol. 121(C), pages 90-99.
    7. Rong, H. & Teixeira, A.P. & Guedes Soares, C., 2022. "Maritime traffic probabilistic prediction based on ship motion pattern extraction," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    8. Zhang, Weibin & Feng, Xinyu & Goerlandt, Floris & Liu, Qing, 2020. "Towards a Convolutional Neural Network model for classifying regional ship collision risk levels for waterway risk analysis," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    9. Zhaojun Wang & Amanda M. Countryman & James J. Corbett & Mandana Saebi, 2021. "Economic and environmental impacts of ballast water management on Small Island Developing States and Least Developed Countries," Papers 2108.13315, arXiv.org.
    10. Anna Occhipinti-Ambrogi, 2021. "Biopollution by Invasive Marine Non-Indigenous Species: A Review of Potential Adverse Ecological Effects in a Changing Climate," IJERPH, MDPI, vol. 18(8), pages 1-20, April.
    11. Yutong Sun & Shangrong Jiang & Shouyang Wang, 2024. "The environmental impacts and sustainable pathways of the global diamond industry," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-12, December.
    12. Yang, Zhisen & Yu, Qing & Yang, Zaili & Wan, Chengpeng, 2024. "A data-driven Bayesian model for evaluating the duration of detention of ships in PSC inspections," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 181(C).
    13. Zhang, Jinfen & Liu, Jiongjiong & Hirdaris, Spyros & Zhang, Mingyang & Tian, Wuliu, 2023. "An interpretable knowledge-based decision support method for ship collision avoidance using AIS data," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    14. Rong, H. & Teixeira, A.P. & Guedes Soares, C., 2021. "Spatial correlation analysis of near ship collision hotspots with local maritime traffic characteristics," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    15. Xin, Xuri & Liu, Kezhong & Loughney, Sean & Wang, Jin & Li, Huanhuan & Ekere, Nduka & Yang, Zaili, 2023. "Multi-scale collision risk estimation for maritime traffic in complex port waters," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
    16. Fuentes, Gabriel, 2021. "Generating bunkering statistics from AIS data: A machine learning approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 155(C).
    17. Xin, Xuri & Liu, Kezhong & Loughney, Sean & Wang, Jin & Yang, Zaili, 2023. "Maritime traffic clustering to capture high-risk multi-ship encounters in complex waters," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    18. Michael F. Gorman & John-Paul Clarke & René Koster & Michael Hewitt & Debjit Roy & Mei Zhang, 2023. "Emerging practices and research issues for big data analytics in freight transportation," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 25(1), pages 28-60, March.
    19. Sun, Qiuxia & Zhang, Yu & Sun, Lu & Li, Qing & Gao, Peng & He, Hao, 2021. "Spatial–temporal differences in operational performance of urban trunk roads based on TPI data: The case of Qingdao," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 568(C).
    20. Liu, Baoli & Li, Zhi-Chun & Wang, Yadong, 2022. "A two-stage stochastic programming model for seaport berth and channel planning with uncertainties in ship arrival and handling times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2009.06960. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.