IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2009.05194.html
   My bibliography  Save this paper

Scenario Forecast of Cross-border Electric Interconnection towards Renewables in South America

Author

Listed:
  • Wenhao Wang
  • Jing Meng
  • Duan Chen
  • Wei Cong

Abstract

Cross-border Electric Interconnection towards renewables is a promising solution for electric sector under the UN 2030 sustainable development goals which is widely promoted in emerging economies. This paper comprehensively investigates state of art in renewable resources and cross-border electric interconnection in South America. Based on the raw data collected from typical countries, a long-term scenario forecast methodology is applied to estimate key indicators of electric sector in target years, comparing the prospects of active promoting cross-border Interconnections Towards Renewables (ITR) scenario with Business as Usual (BAU) scenario in South America region. Key indicators including peak load, installed capacity, investment, and generation cost are forecasted and comparative analyzed by year 2035 and 2050. The comparative data analysis shows that by promoting cross-border interconnection towards renewables in South America, renewable resources can be highly utilized for energy supply, energy matrix can be optimized balanced, economics can be obviously driven and generation cost can be greatly reduced.

Suggested Citation

  • Wenhao Wang & Jing Meng & Duan Chen & Wei Cong, 2020. "Scenario Forecast of Cross-border Electric Interconnection towards Renewables in South America," Papers 2009.05194, arXiv.org, revised Jan 2021.
  • Handle: RePEc:arx:papers:2009.05194
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2009.05194
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pfeifer, Antun & Dobravec, Viktorija & Pavlinek, Luka & Krajačić, Goran & Duić, Neven, 2018. "Integration of renewable energy and demand response technologies in interconnected energy systems," Energy, Elsevier, vol. 161(C), pages 447-455.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Herc, Luka & Pfeifer, Antun & Duić, Neven & Wang, Fei, 2022. "Economic viability of flexibility options for smart energy systems with high penetration of renewable energy," Energy, Elsevier, vol. 252(C).
    3. Dominik Franjo Dominković & Greg Stark & Bri-Mathias Hodge & Allan Schrøder Pedersen, 2018. "Integrated Energy Planning with a High Share of Variable Renewable Energy Sources for a Caribbean Island," Energies, MDPI, vol. 11(9), pages 1-15, August.
    4. Wilberforce, Tabbi & El Hassan, Zaki & Durrant, A. & Thompson, J. & Soudan, Bassel & Olabi, A.G., 2019. "Overview of ocean power technology," Energy, Elsevier, vol. 175(C), pages 165-181.
    5. Siamak Hoseinzadeh & Daniele Groppi & Adriana Scarlet Sferra & Umberto Di Matteo & Davide Astiaso Garcia, 2022. "The PRISMI Plus Toolkit Application to a Grid-Connected Mediterranean Island," Energies, MDPI, vol. 15(22), pages 1-14, November.
    6. Pfeifer, Antun & Feijoo, Felipe & Duić, Neven, 2023. "Fast energy transition as a best strategy for all? The nash equilibrium of long-term energy planning strategies in coupled power markets," Energy, Elsevier, vol. 284(C).
    7. Liu, Jia & Zeng, Peter Pingliang & Xing, Hao & Li, Yalou & Wu, Qiuwei, 2020. "Hierarchical duality-based planning of transmission networks coordinating active distribution network operation," Energy, Elsevier, vol. 213(C).
    8. Alfredo Gimelli & Massimiliano Muccillo, 2021. "Development of a 1 kW Micro-Polygeneration System Fueled by Natural Gas for Single-Family Users," Energies, MDPI, vol. 14(24), pages 1-21, December.
    9. Diwakar Karuppiah & Rajkumar Palanisamy & Arjunan Ponnaiah & Wei-Ren Liu & Chia-Hung Huang & Subadevi Rengapillai & Sivakumar Marimuthu, 2020. "Eggshell-Membrane-Derived Carbon Coated on Li 2 FeSiO 4 Cathode Material for Li-Ion Batteries," Energies, MDPI, vol. 13(4), pages 1-13, February.
    10. Bellocchi, Sara & Manno, Michele & Noussan, Michel & Prina, Matteo Giacomo & Vellini, Michela, 2020. "Electrification of transport and residential heating sectors in support of renewable penetration: Scenarios for the Italian energy system," Energy, Elsevier, vol. 196(C).
    11. Bri‐Mathias S. Hodge & Himanshu Jain & Carlo Brancucci & Gab‐Su Seo & Magnus Korpås & Juha Kiviluoma & Hannele Holttinen & James Charles Smith & Antje Orths & Ana Estanqueiro & Lennart Söder & Damian , 2020. "Addressing technical challenges in 100% variable inverter‐based renewable energy power systems," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(5), September.
    12. Mimica, Marko & Krajačić, Goran, 2021. "The Smart Islands method for defining energy planning scenarios on islands," Energy, Elsevier, vol. 237(C).
    13. Laha, Priyanka & Chakraborty, Basab, 2021. "Low carbon electricity system for India in 2030 based on multi-objective multi-criteria assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    14. Soyeong Park & Seungwook Yoon & Byungtak Lee & Seokkap Ko & Euiseok Hwang, 2020. "Probabilistic Forecasting Based Joint Detection and Imputation of Clustered Bad Data in Residential Electricity Loads," Energies, MDPI, vol. 14(1), pages 1-13, December.
    15. Zhang, Yao & Zhang, Yuxin & Gong, Chao & Dinçer, Hasan & Yüksel, Serhat, 2022. "An integrated hesitant 2-tuple Pythagorean fuzzy analysis of QFD-based innovation cost and duration for renewable energy projects," Energy, Elsevier, vol. 248(C).
    16. Okada, Masaki & Onishi, Terumi & Obara, Shin’ya, 2020. "A design algorithm for an electric power system using wide-area interconnection of renewable energy," Energy, Elsevier, vol. 193(C).
    17. Jiao, P.H. & Chen, J.J. & Peng, K. & Zhao, Y.L. & Xin, K.F., 2020. "Multi-objective mean-semi-entropy model for optimal standalone micro-grid planning with uncertain renewable energy resources," Energy, Elsevier, vol. 191(C).
    18. Jiang, Meihui & Xu, Zhenjiang & Zhu, Hongyu & Hwang Goh, Hui & Agustiono Kurniawan, Tonni & Liu, Tianhao & Zhang, Dongdong, 2024. "Integrated demand response modeling and optimization technologies supporting energy internet," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
    19. Gupta, S. & Maulik, A. & Das, D. & Singh, A., 2022. "Coordinated stochastic optimal energy management of grid-connected microgrids considering demand response, plug-in hybrid electric vehicles, and smart transformers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    20. Elkazaz, Mahmoud & Sumner, Mark & Thomas, David, 2021. "A hierarchical and decentralized energy management system for peer-to-peer energy trading," Applied Energy, Elsevier, vol. 291(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2009.05194. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.