IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2009.03719.html
   My bibliography  Save this paper

Sales Policies for a Virtual Assistant

Author

Listed:
  • Wenjia Ba
  • Haim Mendelson
  • Mingxi Zhu

Abstract

We study the implications of selling through a voice-based virtual assistant (VA). The seller has a set of products available and the VA decides which product to offer and at what price, seeking to maximize its revenue, consumer- or total-surplus. The consumer is impatient and rational, seeking to maximize her expected utility given the information available to her. The VA selects products based on the consumer's request and other information available to it and then presents them sequentially. Once a product is presented and priced, the consumer evaluates it and decides whether to make a purchase. The consumer's valuation of each product comprises a pre-evaluation value, which is common knowledge, and a post-evaluation component which is private to the consumer. We solve for the equilibria and develop efficient algorithms for implementing the solution. We examine the effects of information asymmetry on the outcomes and study how incentive misalignment depends on the distribution of private valuations. We find that monotone rankings are optimal in the cases of a highly patient or impatient consumer and provide a good approximation for other levels of patience. The relationship between products' expected valuations and prices depends on the consumer's patience level and is monotone increasing (decreasing) when the consumer is highly impatient (patient). Also, the seller's share of total surplus decreases in the amount of private information. We compare the VA to a traditional web-based interface, where multiple products are presented simultaneously on each page. We find that within a page, the higher-value products are priced lower than the lower-value products when the private valuations are exponentially distributed. Finally, the web-based interface generally achieves higher profits for the seller than a VA due to the greater commitment power inherent in its presentation.

Suggested Citation

  • Wenjia Ba & Haim Mendelson & Mingxi Zhu, 2020. "Sales Policies for a Virtual Assistant," Papers 2009.03719, arXiv.org.
  • Handle: RePEc:arx:papers:2009.03719
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2009.03719
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pascal Courty & Li Hao, 2000. "Sequential Screening," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 67(4), pages 697-717.
    2. Felipe Caro & Victor Martínez-de-Albéniz & Paat Rusmevichientong, 2014. "The Assortment Packing Problem: Multiperiod Assortment Planning for Short-Lived Products," Management Science, INFORMS, vol. 60(11), pages 2701-2721, November.
    3. Leon Yang Chu & Hamid Nazerzadeh & Heng Zhang, 2020. "Position Ranking and Auctions for Online Marketplaces," Management Science, INFORMS, vol. 66(8), pages 3617-3634, August.
    4. Dorothée Honhon & Vishal Gaur & Sridhar Seshadri, 2010. "Assortment Planning and Inventory Decisions Under Stockout-Based Substitution," Operations Research, INFORMS, vol. 58(5), pages 1364-1379, October.
    5. Negin Golrezaei & Hamid Nazerzadeh & Paat Rusmevichientong, 2014. "Real-Time Optimization of Personalized Assortments," Management Science, INFORMS, vol. 60(6), pages 1532-1551, June.
    6. A. Gürhan Kök & Marshall L. Fisher & Ramnath Vaidyanathan, 2008. "Assortment Planning: Review of Literature and Industry Practice," International Series in Operations Research & Management Science, in: Narendra Agrawal & Stephen A. Smith (ed.), Retail Supply Chain Management, chapter 0, pages 99-153, Springer.
    7. Pierre L’Ecuyer & Patrick Maillé & Nicolás E. Stier-Moses & Bruno Tuffin, 2017. "Revenue-Maximizing Rankings for Online Platforms with Quality-Sensitive Consumers," Operations Research, INFORMS, vol. 65(2), pages 408-423, April.
    8. Ruxian Wang & Ozge Sahin, 2018. "The Impact of Consumer Search Cost on Assortment Planning and Pricing," Management Science, INFORMS, vol. 64(8), pages 3649-3666, August.
    9. Siddharth Mahajan & Garrett van Ryzin, 2001. "Stocking Retail Assortments Under Dynamic Consumer Substitution," Operations Research, INFORMS, vol. 49(3), pages 334-351, June.
    10. V. Kumar & Ashutosh Dixit & Rajshekar (Raj) G. Javalgi & Mayukh Dass, 2016. "Research framework, strategies, and applications of intelligent agent technologies (IATs) in marketing," Journal of the Academy of Marketing Science, Springer, vol. 44(1), pages 24-45, January.
    11. Fernando Bernstein & A. Gürhan Kök & Lei Xie, 2015. "Dynamic Assortment Customization with Limited Inventories," Manufacturing & Service Operations Management, INFORMS, vol. 17(4), pages 538-553, October.
    12. Bruine de Bruin, Wandi & Keren, Gideon, 2003. "Order effects in sequentially judged options due to the direction of comparison," Organizational Behavior and Human Decision Processes, Elsevier, vol. 92(1-2), pages 91-101.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mahsa Derakhshan & Negin Golrezaei & Vahideh Manshadi & Vahab Mirrokni, 2022. "Product Ranking on Online Platforms," Management Science, INFORMS, vol. 68(6), pages 4024-4041, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiu, Jiaqing & Li, Xiangyong & Duan, Yongrui & Chen, Mengxi & Tian, Peng, 2020. "Dynamic assortment in the presence of brand heterogeneity," Journal of Retailing and Consumer Services, Elsevier, vol. 56(C).
    2. Kris Johnson Ferreira & Joel Goh, 2021. "Assortment Rotation and the Value of Concealment," Management Science, INFORMS, vol. 67(3), pages 1489-1507, March.
    3. Mou, Shandong & Robb, David J. & DeHoratius, Nicole, 2018. "Retail store operations: Literature review and research directions," European Journal of Operational Research, Elsevier, vol. 265(2), pages 399-422.
    4. Markus Ettl & Pavithra Harsha & Anna Papush & Georgia Perakis, 2020. "A Data-Driven Approach to Personalized Bundle Pricing and Recommendation," Manufacturing & Service Operations Management, INFORMS, vol. 22(3), pages 461-480, May.
    5. Felipe Caro & Victor Martínez-de-Albéniz & Paat Rusmevichientong, 2014. "The Assortment Packing Problem: Multiperiod Assortment Planning for Short-Lived Products," Management Science, INFORMS, vol. 60(11), pages 2701-2721, November.
    6. Paat Rusmevichientong & Mika Sumida & Huseyin Topaloglu, 2020. "Dynamic Assortment Optimization for Reusable Products with Random Usage Durations," Management Science, INFORMS, vol. 66(7), pages 2820-2844, July.
    7. Fernando Bernstein & A. Gürhan Kök & Lei Xie, 2015. "Dynamic Assortment Customization with Limited Inventories," Manufacturing & Service Operations Management, INFORMS, vol. 17(4), pages 538-553, October.
    8. Menezes, Mozart B.C. & Pinto, Roberto, 2022. "Product proliferation, cannibalisation, and substitution: A first look into entailed risk and complexity," International Journal of Production Economics, Elsevier, vol. 243(C).
    9. Leon Yang Chu & Hamid Nazerzadeh & Heng Zhang, 2020. "Position Ranking and Auctions for Online Marketplaces," Management Science, INFORMS, vol. 66(8), pages 3617-3634, August.
    10. Umpfenbach, Edward Lawrence & Dalkiran, Evrim & Chinnam, Ratna Babu & Murat, Alper Ekrem, 2018. "Promoting sustainability of automotive products through strategic assortment planning," European Journal of Operational Research, Elsevier, vol. 269(1), pages 272-285.
    11. Hekimoğlu, Mustafa & Sevim, Ismail & Aksezer, Çağlar & Durmuş, İpek, 2019. "Assortment optimization with log-linear demand: Application at a Turkish grocery store," Journal of Retailing and Consumer Services, Elsevier, vol. 50(C), pages 199-214.
    12. Mahsa Derakhshan & Negin Golrezaei & Vahideh Manshadi & Vahab Mirrokni, 2022. "Product Ranking on Online Platforms," Management Science, INFORMS, vol. 68(6), pages 4024-4041, June.
    13. Hense, Jonas & Hübner, Alexander, 2022. "Assortment optimization in omni-channel retailing," European Journal of Operational Research, Elsevier, vol. 301(1), pages 124-140.
    14. Muzaffer Buyruk & Ertan Güner, 2022. "Personalization in airline revenue management: an overview and future outlook," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 21(2), pages 129-139, April.
    15. Çömez-Dolgan, Nagihan & Fescioglu-Unver, Nilgun & Cephe, Ecem & Şen, Alper, 2021. "Capacitated strategic assortment planning under explicit demand substitution," European Journal of Operational Research, Elsevier, vol. 294(3), pages 1120-1138.
    16. Mehrani, Saharnaz & Sefair, Jorge A., 2022. "Robust assortment optimization under sequential product unavailability," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1027-1043.
    17. Refael Hassin & Justo Puerto, 2024. "Pricing heterogeneous products to heterogeneous customers who buy sequentially," Annals of Operations Research, Springer, vol. 340(2), pages 863-890, September.
    18. Negin Golrezaei & Hamid Nazerzadeh & Paat Rusmevichientong, 2014. "Real-Time Optimization of Personalized Assortments," Management Science, INFORMS, vol. 60(6), pages 1532-1551, June.
    19. Xi Chen & Zachary Owen & Clark Pixton & David Simchi-Levi, 2022. "A Statistical Learning Approach to Personalization in Revenue Management," Management Science, INFORMS, vol. 68(3), pages 1923-1937, March.
    20. Zhang, Wei & Rajaram, Kumar, 2017. "Managing limited retail space for basic products: Space sharing vs. space dedication," European Journal of Operational Research, Elsevier, vol. 263(3), pages 768-781.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2009.03719. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.