IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2008.12953.html
   My bibliography  Save this paper

Sparse High-Order Portfolios via Proximal DCA and SCA

Author

Listed:
  • Jinxin Wang
  • Zengde Deng
  • Taoli Zheng
  • Anthony Man-Cho So

Abstract

In this paper, we aim at solving the cardinality constrained high-order portfolio optimization, i.e., mean-variance-skewness-kurtosis model with cardinality constraint (MVSKC). Optimization for the MVSKC model is of great difficulty in two parts. One is that the objective function is non-convex, the other is the combinational nature of the cardinality constraint, leading to non-convexity as well dis-continuity. Based on the observation that cardinality constraint has the difference-of-convex (DC) property, we transform the cardinality constraint into a penalty term and then propose three algorithms including the proximal difference of convex algorithm (pDCA), pDCA with extrapolation (pDCAe) and the successive convex approximation (SCA) to handle the resulting penalized MVSK (PMVSK) formulation. Moreover, theoretical convergence results of these algorithms are established respectively. Numerical experiments on the real datasets demonstrate the superiority of our proposed methods in obtaining high utility and sparse solutions as well as efficiency in terms of time usage.

Suggested Citation

  • Jinxin Wang & Zengde Deng & Taoli Zheng & Anthony Man-Cho So, 2020. "Sparse High-Order Portfolios via Proximal DCA and SCA," Papers 2008.12953, arXiv.org, revised Jun 2021.
  • Handle: RePEc:arx:papers:2008.12953
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2008.12953
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Boudt, Kris & Lu, Wanbo & Peeters, Benedict, 2015. "Higher order comoments of multifactor models and asset allocation," Finance Research Letters, Elsevier, vol. 13(C), pages 225-233.
    2. Rui Zhou & Daniel P. Palomar, 2020. "Solving High-Order Portfolios via Successive Convex Approximation Algorithms," Papers 2008.00863, arXiv.org.
    3. Kolm, Petter N. & Tütüncü, Reha & Fabozzi, Frank J., 2014. "60 Years of portfolio optimization: Practical challenges and current trends," European Journal of Operational Research, Elsevier, vol. 234(2), pages 356-371.
    4. Christopher Adcock & Martin Eling & Nicola Loperfido, 2015. "Skewed distributions in finance and actuarial science: a review," The European Journal of Finance, Taylor & Francis Journals, vol. 21(13-14), pages 1253-1281, November.
    5. Rui Pedro Brito & Hélder Sebastião & Pedro Godinho, 2015. "Portfolio Management With Higher Moments: The Cardinality Impact," GEMF Working Papers 2015-15, GEMF, Faculty of Economics, University of Coimbra.
    6. Bo Wen & Xiaojun Chen & Ting Kei Pong, 2018. "A proximal difference-of-convex algorithm with extrapolation," Computational Optimization and Applications, Springer, vol. 69(2), pages 297-324, March.
    7. Campbell Harvey & John Liechty & Merrill Liechty & Peter Muller, 2010. "Portfolio selection with higher moments," Quantitative Finance, Taylor & Francis Journals, vol. 10(5), pages 469-485.
    8. Tao Pham Dinh & Yi-Shuai Niu, 2011. "An efficient DC programming approach for portfolio decision with higher moments," Computational Optimization and Applications, Springer, vol. 50(3), pages 525-554, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rui Zhou & Daniel P. Palomar, 2020. "Solving High-Order Portfolios via Successive Convex Approximation Algorithms," Papers 2008.00863, arXiv.org.
    2. Lassance, Nathan & Vrins, Frédéric, 2019. "Robust portfolio selection using sparse estimation of comoment tensors," LIDAM Discussion Papers LFIN 2019007, Université catholique de Louvain, Louvain Finance (LFIN).
    3. Lassance, Nathan & Vrins, Frédéric, 2021. "Portfolio selection with parsimonious higher comoments estimation," Journal of Banking & Finance, Elsevier, vol. 126(C).
    4. Boudt, Kris & Cornilly, Dries & Verdonck, Tim, 2020. "Nearest comoment estimation with unobserved factors," Journal of Econometrics, Elsevier, vol. 217(2), pages 381-397.
    5. Manuel Galea & David Cademartori & Roberto Curci & Alonso Molina, 2020. "Robust Inference in the Capital Asset Pricing Model Using the Multivariate t -distribution," JRFM, MDPI, vol. 13(6), pages 1-22, June.
    6. Harris, Richard D.F. & Stoja, Evarist & Tan, Linzhi, 2017. "The dynamic Black–Litterman approach to asset allocation," European Journal of Operational Research, Elsevier, vol. 259(3), pages 1085-1096.
    7. Nathan Lassance & Frédéric Vrins, 2021. "Minimum Rényi entropy portfolios," Annals of Operations Research, Springer, vol. 299(1), pages 23-46, April.
    8. Ghaemi Asl, Mahdi & Rashidi, Muhammad Mahdi & Tavakkoli, Hamid Raza & Rezgui, Hichem, 2024. "Does Islamic investing modify portfolio performance? Time-varying optimization strategies for conventional and Shariah energy-ESG-utilities portfolio," The Quarterly Review of Economics and Finance, Elsevier, vol. 94(C), pages 37-57.
    9. Fredy Pokou & Jules Sadefo Kamdem & François Benhmad, 2024. "Empirical Performance of an ESG Assets Portfolio from US Market," Computational Economics, Springer;Society for Computational Economics, vol. 64(3), pages 1569-1638, September.
    10. Barbi, Massimiliano & Romagnoli, Silvia, 2018. "Skewness, basis risk, and optimal futures demand," International Review of Economics & Finance, Elsevier, vol. 58(C), pages 14-29.
    11. Mynbayeva, Elmira & Lamb, John D. & Zhao, Yuan, 2022. "Why estimation alone causes Markowitz portfolio selection to fail and what we might do about it," European Journal of Operational Research, Elsevier, vol. 301(2), pages 694-707.
    12. Daniel Felix Ahelegbey & Paolo Giudici & Fatemeh Mojtahedi, 2022. "Crypto Asset Portfolio Selection," FinTech, MDPI, vol. 1(1), pages 1-9, February.
    13. Philipp M. Möller, 2018. "Drawdown Measures And Return Moments," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(07), pages 1-42, November.
    14. Massimiliano Giacalone & Demetrio Panarello, 2022. "A Nonparametric Approach for Testing Long Memory in Stock Returns’ Higher Moments," Mathematics, MDPI, vol. 10(5), pages 1-21, February.
    15. Nicola Loperfido & Tomer Shushi, 2023. "Optimal Portfolio Projections for Skew-Elliptically Distributed Portfolio Returns," Journal of Optimization Theory and Applications, Springer, vol. 199(1), pages 143-166, October.
    16. Stanislav Anatolyev & Vladimir Pyrlik, 2021. "Shrinkage for Gaussian and t Copulas in Ultra-High Dimensions," CERGE-EI Working Papers wp699, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
    17. Eranda c{C}ela & Stephan Hafner & Roland Mestel & Ulrich Pferschy, 2022. "Integrating multiple sources of ordinal information in portfolio optimization," Papers 2211.00420, arXiv.org, revised Jul 2023.
    18. Yajie Yang & Longfeng Zhao & Lin Chen & Chao Wang & Jihui Han, 2021. "Portfolio optimization with idiosyncratic and systemic risks for financial networks," Papers 2111.11286, arXiv.org.
    19. Fries, Sébastien, 2018. "Conditional moments of noncausal alpha-stable processes and the prediction of bubble crash odds," MPRA Paper 97353, University Library of Munich, Germany, revised Nov 2019.
    20. Anatolyev, Stanislav & Pyrlik, Vladimir, 2022. "Copula shrinkage and portfolio allocation in ultra-high dimensions," Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2008.12953. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.