IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2008.06660.html
   My bibliography  Save this paper

No COVID-19 Climate Silver Lining in the US Power Sector

Author

Listed:
  • Max Luke
  • Priyanshi Somani
  • Turner Cotterman
  • Dhruv Suri
  • Stephen J. Lee

Abstract

Recent studies conclude that the global coronavirus (COVID-19) pandemic decreased power sector CO$_2$ emissions globally and in the United States. In this paper, we analyze the statistical significance of CO2 emissions reductions in the U.S. power sector from March through December 2020. We use Gaussian process (GP) regression to assess whether CO2 emissions reductions would have occurred with reasonable probability in the absence of COVID-19 considering uncertainty due to factors unrelated to the pandemic and adjusting for weather, seasonality, and recent emissions trends. We find that monthly CO2 emissions reductions are only statistically significant in April and May 2020 considering hypothesis tests at 5% significance levels. Separately, we consider the potential impact of COVID-19 on coal-fired power plant retirements through 2022. We find that only a small percentage of U.S. coal power plants are at risk of retirement due to a possible COVID-19-related sustained reduction in electricity demand and prices. We observe and anticipate a return to pre-COVID-19 CO2 emissions in the U.S. power sector.

Suggested Citation

  • Max Luke & Priyanshi Somani & Turner Cotterman & Dhruv Suri & Stephen J. Lee, 2020. "No COVID-19 Climate Silver Lining in the US Power Sector," Papers 2008.06660, arXiv.org, revised May 2021.
  • Handle: RePEc:arx:papers:2008.06660
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2008.06660
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Editorial, 2020. "Covid-19 and Climate Change," Journal, Review of Agrarian Studies, vol. 10(1), pages 5-6, January-J.
    2. Nir Jaimovich & Henry E. Siu, 2020. "Job Polarization and Jobless Recoveries," The Review of Economics and Statistics, MIT Press, vol. 102(1), pages 129-147, March.
    3. John Coglianese, Todd D. Gerarden, and James H. Stock, 2020. "The Effects of Fuel Prices, Environmental Regulations, and Other Factors on U.S. Coal Production, 2008-2016," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    4. Roman Mendelevitch & Christian Hauenstein & Franziska Holz, 2019. "The death spiral of coal in the U.S.: will changes in U.S. Policy turn the tide?," Climate Policy, Taylor & Francis Journals, vol. 19(10), pages 1310-1324, November.
    5. Brad Hershbein & Lisa B. Kahn, 2018. "Do Recessions Accelerate Routine-Biased Technological Change? Evidence from Vacancy Postings," American Economic Review, American Economic Association, vol. 108(7), pages 1737-1772, July.
    6. Jeffery B. Greenblatt & Samveg Saxena, 2015. "Autonomous taxis could greatly reduce greenhouse-gas emissions of US light-duty vehicles," Nature Climate Change, Nature, vol. 5(9), pages 860-863, September.
    7. Corinne Le Quéré & Robert B. Jackson & Matthew W. Jones & Adam J. P. Smith & Sam Abernethy & Robbie M. Andrew & Anthony J. De-Gol & David R. Willis & Yuli Shan & Josep G. Canadell & Pierre Friedlingst, 2020. "Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement," Nature Climate Change, Nature, vol. 10(7), pages 647-653, July.
    8. Morteza Taiebat & Samuel Stolper & Ming Xu, 2019. "Forecasting the Impact of Connected and Automated Vehicles on Energy Use A Microeconomic Study of Induced Travel and Energy Rebound," Papers 1902.00382, arXiv.org, revised May 2019.
    9. Wadud, Zia & MacKenzie, Don & Leiby, Paul, 2016. "Help or hindrance? The travel, energy and carbon impacts of highly automated vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 86(C), pages 1-18.
    10. Taiebat, Morteza & Stolper, Samuel & Xu, Ming, 2019. "Forecasting the Impact of Connected and Automated Vehicles on Energy Use: A Microeconomic Study of Induced Travel and Energy Rebound," Applied Energy, Elsevier, vol. 247(C), pages 297-308.
    11. Taiebat, Morteza & Stolper, Samuel & Xu, Ming, 2019. "Forecasting the Impact of Connected and Automated Vehicles on Energy Use: A Microeconomic Study of Induced Travel and Energy Rebound," LawArXiv dk6qv, Center for Open Science.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moneim Massar & Imran Reza & Syed Masiur Rahman & Sheikh Muhammad Habib Abdullah & Arshad Jamal & Fahad Saleh Al-Ismail, 2021. "Impacts of Autonomous Vehicles on Greenhouse Gas Emissions—Positive or Negative?," IJERPH, MDPI, vol. 18(11), pages 1-23, May.
    2. Nuri C. Onat & Jafar Mandouri & Murat Kucukvar & Burak Sen & Saddam A. Abbasi & Wael Alhajyaseen & Adeeb A. Kutty & Rateb Jabbar & Marcello Contestabile & Abdel Magid Hamouda, 2023. "Rebound effects undermine carbon footprint reduction potential of autonomous electric vehicles," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Pan, Shuai & Fulton, Lewis M. & Roy, Anirban & Jung, Jia & Choi, Yunsoo & Gao, H. Oliver, 2021. "Shared use of electric autonomous vehicles: Air quality and health impacts of future mobility in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    4. Peer, Stefanie & Müller, Johannes & Naqvi, Asjad & Straub, Markus, 2024. "Introducing shared, electric, autonomous vehicles (SAEVs) in sub-urban zones: Simulating the case of Vienna," Transport Policy, Elsevier, vol. 147(C), pages 232-243.
    5. Möller, Jasmin & Daschkovska, Kateryna & Bogaschewsky, Ronald, 2019. "Sustainable city logistics: rebound effects from self-driving vehicles," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Jahn, Carlos & Kersten, Wolfgang & Ringle, Christian M. (ed.), Digital Transformation in Maritime and City Logistics: Smart Solutions for Logistics. Proceedings of the Hamburg International Conference of Logistics, volume 28, pages 299-337, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    6. Liao, Zitong & Taiebat, Morteza & Xu, Ming, 2021. "Shared autonomous electric vehicle fleets with vehicle-to-grid capability: Economic viability and environmental co-benefits," Applied Energy, Elsevier, vol. 302(C).
    7. Batarce, Marco & Basso, Franco & Basso, Leonardo J., 2023. "The elasticity of demand on urban highways: The case of Santiago," Transport Policy, Elsevier, vol. 133(C), pages 234-241.
    8. Guzzo, D. & Walrave, B. & Videira, N. & Oliveira, I.C. & Pigosso, D.C.A., 2024. "Towards a systemic view on rebound effects: Modelling the feedback loops of rebound mechanisms," Ecological Economics, Elsevier, vol. 217(C).
    9. Harb, Mustapha PhD & Malik, Jai PhD & Circella, Giovanni PhD & Walker, Joan L. PhD, 2022. "Simulating Life with Personally-Owned Autonomous Vehicles through a Naturalistic Experiment with Personal Drivers," Institute of Transportation Studies, Working Paper Series qt79g921rp, Institute of Transportation Studies, UC Davis.
    10. Dong, Haoxuan & Zhuang, Weichao & Chen, Boli & Wang, Yan & Lu, Yanbo & Liu, Ying & Xu, Liwei & Yin, Guodong, 2022. "A comparative study of energy-efficient driving strategy for connected internal combustion engine and electric vehicles at signalized intersections," Applied Energy, Elsevier, vol. 310(C).
    11. Yuan, Zhen & Xu, Jie & Li, Bing & Yao, Tingting, 2022. "Limits of technological progress in controlling energy consumption: Evidence from the energy rebound effects across China's industrial sector," Energy, Elsevier, vol. 245(C).
    12. Pudāne, Baiba & van Cranenburgh, Sander & Chorus, Caspar G., 2021. "A day in the life with an automated vehicle: Empirical analysis of data from an interactive stated activity-travel survey," Journal of choice modelling, Elsevier, vol. 39(C).
    13. Rasti-Barzoki, Morteza & Moon, Ilkyeong, 2021. "A game theoretic approach for analyzing electric and gasoline-based vehicles’ competition in a supply chain under government sustainable strategies: A case study of South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    14. Dowds, Jonathan & Sullivan, James & Rowangould, Gregory & Aultman-Hall, Lisa, 2021. "Consideration of Automated Vehicle Benefits and Research Needs for Rural America," Institute of Transportation Studies, Working Paper Series qt4v25q5n9, Institute of Transportation Studies, UC Davis.
    15. Jan C. T. Bieser & Vlad C. Coroamă, 2021. "Direkte und indirekte Umwelteffekte der Informations- und Kommunikationstechnologie [Direct and indirect environmental effects of information and communication technology]," Sustainability Nexus Forum, Springer, vol. 29(1), pages 1-11, March.
    16. Alexander Cremer & Katrin Müller & Matthias Finkbeiner, 2021. "A Systemic View of Future Mobility Scenario Impacts on and Their Implications for City Organizational LCA: The Case of Autonomous Driving in Vienna," Sustainability, MDPI, vol. 14(1), pages 1-19, December.
    17. Rasti-Barzoki, Morteza & Moon, Ilkyeong, 2020. "A game theoretic approach for car pricing and its energy efficiency level versus governmental sustainability goals by considering rebound effect: A case study of South Korea," Applied Energy, Elsevier, vol. 271(C).
    18. Taiebat, Morteza & Stolper, Samuel & Xu, Ming, 2022. "Widespread range suitability and cost competitiveness of electric vehicles for ride-hailing drivers," Applied Energy, Elsevier, vol. 319(C).
    19. Harb, Mustapha PhD & Malik, Jai PhD & Circella, Giovanni PhD & Walker, Joan L. PhD, 2022. "Simulating Life with Personally-Owned Autonomous Vehicles through a Naturalistic Experiment with Personal Drivers," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt79g921rp, Institute of Transportation Studies, UC Berkeley.
    20. Qian, Lixian & Yin, Juelin & Huang, Youlin & Liang, Ya, 2023. "The role of values and ethics in influencing consumers’ intention to use autonomous vehicle hailing services," Technological Forecasting and Social Change, Elsevier, vol. 188(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2008.06660. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.