A Systemic View of Future Mobility Scenario Impacts on and Their Implications for City Organizational LCA: The Case of Autonomous Driving in Vienna
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Morteza Taiebat & Samuel Stolper & Ming Xu, 2019. "Forecasting the Impact of Connected and Automated Vehicles on Energy Use A Microeconomic Study of Induced Travel and Energy Rebound," Papers 1902.00382, arXiv.org, revised May 2019.
- Taiebat, Morteza & Stolper, Samuel & Xu, Ming, 2019. "Forecasting the Impact of Connected and Automated Vehicles on Energy Use: A Microeconomic Study of Induced Travel and Energy Rebound," Applied Energy, Elsevier, vol. 247(C), pages 297-308.
- Taiebat, Morteza & Stolper, Samuel & Xu, Ming, 2019. "Forecasting the Impact of Connected and Automated Vehicles on Energy Use: A Microeconomic Study of Induced Travel and Energy Rebound," LawArXiv dk6qv, Center for Open Science.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Moneim Massar & Imran Reza & Syed Masiur Rahman & Sheikh Muhammad Habib Abdullah & Arshad Jamal & Fahad Saleh Al-Ismail, 2021. "Impacts of Autonomous Vehicles on Greenhouse Gas Emissions—Positive or Negative?," IJERPH, MDPI, vol. 18(11), pages 1-23, May.
- Batarce, Marco & Basso, Franco & Basso, Leonardo J., 2023. "The elasticity of demand on urban highways: The case of Santiago," Transport Policy, Elsevier, vol. 133(C), pages 234-241.
- Nuri C. Onat & Jafar Mandouri & Murat Kucukvar & Burak Sen & Saddam A. Abbasi & Wael Alhajyaseen & Adeeb A. Kutty & Rateb Jabbar & Marcello Contestabile & Abdel Magid Hamouda, 2023. "Rebound effects undermine carbon footprint reduction potential of autonomous electric vehicles," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
- Max Luke & Priyanshi Somani & Turner Cotterman & Dhruv Suri & Stephen J. Lee, 2020. "No COVID-19 Climate Silver Lining in the US Power Sector," Papers 2008.06660, arXiv.org, revised May 2021.
- Guzzo, D. & Walrave, B. & Videira, N. & Oliveira, I.C. & Pigosso, D.C.A., 2024. "Towards a systemic view on rebound effects: Modelling the feedback loops of rebound mechanisms," Ecological Economics, Elsevier, vol. 217(C).
- Peer, Stefanie & Müller, Johannes & Naqvi, Asjad & Straub, Markus, 2024. "Introducing shared, electric, autonomous vehicles (SAEVs) in sub-urban zones: Simulating the case of Vienna," Transport Policy, Elsevier, vol. 147(C), pages 232-243.
- Harb, Mustapha PhD & Malik, Jai PhD & Circella, Giovanni PhD & Walker, Joan L. PhD, 2022. "Simulating Life with Personally-Owned Autonomous Vehicles through a Naturalistic Experiment with Personal Drivers," Institute of Transportation Studies, Working Paper Series qt79g921rp, Institute of Transportation Studies, UC Davis.
- Dong, Haoxuan & Zhuang, Weichao & Chen, Boli & Wang, Yan & Lu, Yanbo & Liu, Ying & Xu, Liwei & Yin, Guodong, 2022. "A comparative study of energy-efficient driving strategy for connected internal combustion engine and electric vehicles at signalized intersections," Applied Energy, Elsevier, vol. 310(C).
- Möller, Jasmin & Daschkovska, Kateryna & Bogaschewsky, Ronald, 2019. "Sustainable city logistics: rebound effects from self-driving vehicles," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Jahn, Carlos & Kersten, Wolfgang & Ringle, Christian M. (ed.), Digital Transformation in Maritime and City Logistics: Smart Solutions for Logistics. Proceedings of the Hamburg International Conference of Logistics, volume 28, pages 299-337, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
- Yuan, Zhen & Xu, Jie & Li, Bing & Yao, Tingting, 2022. "Limits of technological progress in controlling energy consumption: Evidence from the energy rebound effects across China's industrial sector," Energy, Elsevier, vol. 245(C).
- Pudāne, Baiba & van Cranenburgh, Sander & Chorus, Caspar G., 2021. "A day in the life with an automated vehicle: Empirical analysis of data from an interactive stated activity-travel survey," Journal of choice modelling, Elsevier, vol. 39(C).
- Rasti-Barzoki, Morteza & Moon, Ilkyeong, 2021. "A game theoretic approach for analyzing electric and gasoline-based vehicles’ competition in a supply chain under government sustainable strategies: A case study of South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
- Dowds, Jonathan & Sullivan, James & Rowangould, Gregory & Aultman-Hall, Lisa, 2021. "Consideration of Automated Vehicle Benefits and Research Needs for Rural America," Institute of Transportation Studies, Working Paper Series qt4v25q5n9, Institute of Transportation Studies, UC Davis.
- Liao, Zitong & Taiebat, Morteza & Xu, Ming, 2021. "Shared autonomous electric vehicle fleets with vehicle-to-grid capability: Economic viability and environmental co-benefits," Applied Energy, Elsevier, vol. 302(C).
- Jan C. T. Bieser & Vlad C. Coroamă, 2021. "Direkte und indirekte Umwelteffekte der Informations- und Kommunikationstechnologie [Direct and indirect environmental effects of information and communication technology]," Sustainability Nexus Forum, Springer, vol. 29(1), pages 1-11, March.
- Rasti-Barzoki, Morteza & Moon, Ilkyeong, 2020. "A game theoretic approach for car pricing and its energy efficiency level versus governmental sustainability goals by considering rebound effect: A case study of South Korea," Applied Energy, Elsevier, vol. 271(C).
- Taiebat, Morteza & Stolper, Samuel & Xu, Ming, 2022. "Widespread range suitability and cost competitiveness of electric vehicles for ride-hailing drivers," Applied Energy, Elsevier, vol. 319(C).
- Pan, Shuai & Fulton, Lewis M. & Roy, Anirban & Jung, Jia & Choi, Yunsoo & Gao, H. Oliver, 2021. "Shared use of electric autonomous vehicles: Air quality and health impacts of future mobility in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
- Harb, Mustapha PhD & Malik, Jai PhD & Circella, Giovanni PhD & Walker, Joan L. PhD, 2022. "Simulating Life with Personally-Owned Autonomous Vehicles through a Naturalistic Experiment with Personal Drivers," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt79g921rp, Institute of Transportation Studies, UC Berkeley.
- Samantha Heiberg & Emily Emond & Cody Allen & Dheeraj Raya & Venkataramana Gadhamshetty & Saurabh Sudha Dhiman & Achyuth Ravilla & Ilke Celik, 2023. "Environmental Impact Assessment of Autonomous Transportation Systems," Energies, MDPI, vol. 16(13), pages 1-13, June.
More about this item
Keywords
autonomous vehicles; life cycle assessment; organizational LCA; future mobility; cities;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2021:i:1:p:158-:d:710213. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.