IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2007.11618.html
   My bibliography  Save this paper

Towards a Sustainable Agricultural Credit Guarantee Scheme

Author

Listed:
  • Reason Lesego Machete

Abstract

Since 1986, Government of Botswana has been running an Agricultural Credit Guarantee Scheme for dry-land arable farming. The scheme purports to assist dry-land crop farmers who have taken loans with participating banks or lending institutions to help them meet their debt obligations in case of crop failure due to drought, floods, frost or hailstorm. Nonetheless, to date, the scheme has focused solely on drought. The scheme has placed an unsustainable financial burden on Government because it is not based on sound actuarial principles. This paper argues that the level of Government subsidies should take into account the gains made by farmers during non-drought years. It is an attempt to circumvent the challenges of correlated climate risks and recommends a quasi self-financing mechanism, assuming that the major driver of crop yield failure is drought. Moreover, it provides a novel subsidy and premium rate setting method.

Suggested Citation

  • Reason Lesego Machete, 2020. "Towards a Sustainable Agricultural Credit Guarantee Scheme," Papers 2007.11618, arXiv.org, revised Aug 2020.
  • Handle: RePEc:arx:papers:2007.11618
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2007.11618
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alan P. Ker & Barry K. Goodwin, 2000. "Nonparametric Estimation of Crop Insurance Rates Revisited," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 82(2), pages 463-478.
    2. Fujin Yi & Mengfei Zhou & Yu Yvette Zhang, 2020. "Value of Incorporating ENSO Forecast in Crop Insurance Programs," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(2), pages 439-457, March.
    3. H. Holly Wang & Hao Zhang, 2003. "On the Possibility of a Private Crop Insurance Market: A Spatial Statistics Approach," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 70(1), pages 111-124, March.
    4. Joseph W. Glauber, 2004. "Crop Insurance Reconsidered," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 86(5), pages 1179-1195.
    5. John Duncan & Robert J. Myers, 2000. "Crop Insurance under Catastrophic Risk," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 82(4), pages 842-855.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martínez-Salgueiro, Andrea & Tarrazón-Rodón, María-Antonia, 2020. "Is diversification effective in reducing the systemic risk implied by a market for weather index-based insurance in Spain?," MPRA Paper 119924, University Library of Munich, Germany, revised 19 May 2021.
    2. Miao, Ruiqing & Hennessy, David A. & Feng, Hongli, 2016. "The Effects of Crop Insurance Subsidies and Sodsaver on Land-Use Change," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 41(2), May.
    3. Chen, Shu-Ling & Miranda, Mario J., 2006. "Modeling Yield Distribution In High Risk Counties: Application To Texas Upland Cotton," 2006 Annual meeting, July 23-26, Long Beach, CA 21392, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    4. Adhikari, Shyam & Knight, Thomas O. & Belasco, Eric J., 2012. "Evaluation of Crop Insurance Yield Guarantees and Producer Welfare with Upward-Trending Yields," Agricultural and Resource Economics Review, Northeastern Agricultural and Resource Economics Association, vol. 41(3), pages 1-10, December.
    5. Zhiwei Shen & Martin Odening, 2013. "Coping with systemic risk in index-based crop insurance," Agricultural Economics, International Association of Agricultural Economists, vol. 44(1), pages 1-13, January.
    6. Zhiwei Shen & Martin Odening & Ostap Okhrin, 2016. "Can expert knowledge compensate for data scarcity in crop insurance pricing?," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 43(2), pages 237-269.
    7. Ramirez, Octavio A. & Carpio, Carlos E. & Rejesus, Roderick M., 2011. "Can Crop Insurance Premiums Be Reliably Estimated?," Agricultural and Resource Economics Review, Northeastern Agricultural and Resource Economics Association, vol. 40(1), pages 1-14, April.
    8. Di Falco, Salvatore & Capitanio, Fabian & Adinolfi, Felice, 2011. "Natural Vs Financial Insurance in the Management of Weather Risk Exposure in the Italian Agriculture," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 114325, European Association of Agricultural Economists.
    9. Yong Liu & Alan P. Ker, 2021. "Simultaneous borrowing of information across space and time for pricing insurance contracts: An application to rating crop insurance policies," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(1), pages 231-257, March.
    10. repec:hum:wpaper:sfb649dp2013-030 is not listed on IDEAS
    11. Enjolras, Geoffroy & Sentis, P., 2008. "The Main Determinants of Insurance Purchase: An Empirical Study on Crop Insurance Policies in France," 2008 International Congress, August 26-29, 2008, Ghent, Belgium 44395, European Association of Agricultural Economists.
    12. Zant, Wouter, 2008. "Hot Stuff: Index Insurance for Indian Smallholder Pepper Growers," World Development, Elsevier, vol. 36(9), pages 1585-1606, September.
    13. Ozaki, Vitor & Campos, Rogério, 2017. "Reduzindo a Incerteza no Mercado de Seguros: Uma Abordagem via Informações de Sensoriamento Remoto e Atuária," Revista Brasileira de Economia - RBE, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil), vol. 71(4), December.
    14. Chen, Shu-Ling & Miranda, Mario J., 2008. "Modeling Texas Dryland Cotton Yields, With Application to Crop Insurance Actuarial Rating," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 40(1), pages 239-252, April.
    15. Woodard, Joshua D. & Garcia, Philip, 2008. "Weather Derivatives, Spatial Aggregation, and Systemic Risk: Implications for Reinsurance Hedging," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 33(1), pages 1-18, April.
    16. Ming Wang & Tao Ye & Peijun Shi, 2016. "Factors Affecting Farmers’ Crop Insurance Participation in China," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 64(3), pages 479-492, September.
    17. Vitor Ozaki, 2009. "Pricing farm-level agricultural insurance: a Bayesian approach," Empirical Economics, Springer, vol. 36(2), pages 231-242, May.
    18. Geoffroy Enjolras & Robert Kast, 2012. "Combining participating insurance and financial policies," Agricultural Finance Review, Emerald Group Publishing Limited, vol. 72(1), pages 156-178, May.
    19. Tangermann, Stefan, 2011. "Risk Management in Agriculture and the Future of the EU's Common Agricultural Policy," National Policies, Trade and Sustainable Development 320171, International Centre for Trade and Sustainable Development (ICTSD).
    20. Yi, Jing & Richardson, James & Bryant, Henry, 2016. "How Do Premium Subsidies Affect Crop Insurance Demand at Different Coverage Levels: the Case of Corn," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 236249, Agricultural and Applied Economics Association.
    21. Lybbert, Travis & Sumner, Daniel, 2010. "Agricultural Technologies for Climate Change Mitigation and Adaptation in Developing Countries: Policy Options for Innovation and Technology Diffusion," Climate Change 320104, International Centre for Trade and Sustainable Development (ICTSD).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2007.11618. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.