IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2003.07545.html
   My bibliography  Save this paper

Interpretable Personalization via Policy Learning with Linear Decision Boundaries

Author

Listed:
  • Zhaonan Qu
  • Isabella Qian
  • Zhengyuan Zhou

Abstract

With the rise of the digital economy and an explosion of available information about consumers, effective personalization of goods and services has become a core business focus for companies to improve revenues and maintain a competitive edge. This paper studies the personalization problem through the lens of policy learning, where the goal is to learn a decision-making rule (a policy) that maps from consumer and product characteristics (features) to recommendations (actions) in order to optimize outcomes (rewards). We focus on using available historical data for offline learning with unknown data collection procedures, where a key challenge is the non-random assignment of recommendations. Moreover, in many business and medical applications, interpretability of a policy is essential. We study the class of policies with linear decision boundaries to ensure interpretability, and propose learning algorithms using tools from causal inference to address unbalanced treatments. We study several optimization schemes to solve the associated non-convex, non-smooth optimization problem, and find that a Bayesian optimization algorithm is effective. We test our algorithm with extensive simulation studies and apply it to an anonymized online marketplace customer purchase dataset, where the learned policy outputs a personalized discount recommendation based on customer and product features in order to maximize gross merchandise value (GMV) for sellers. Our learned policy improves upon the platform's baseline by 88.2\% in net sales revenue, while also providing informative insights on which features are important for the decision-making process. Our findings suggest that our proposed policy learning framework using tools from causal inference and Bayesian optimization provides a promising practical approach to interpretable personalization across a wide range of applications.

Suggested Citation

  • Zhaonan Qu & Isabella Qian & Zhengyuan Zhou, 2020. "Interpretable Personalization via Policy Learning with Linear Decision Boundaries," Papers 2003.07545, arXiv.org, revised Nov 2022.
  • Handle: RePEc:arx:papers:2003.07545
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2003.07545
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhengyuan Zhou & Susan Athey & Stefan Wager, 2023. "Offline Multi-Action Policy Learning: Generalization and Optimization," Operations Research, INFORMS, vol. 71(1), pages 148-183, January.
    2. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018. "Double/debiased machine learning for treatment and structural parameters," Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
    3. Andrew Bennett & Nathan Kallus, 2020. "Efficient Policy Learning from Surrogate-Loss Classification Reductions," Papers 2002.05153, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rafael Alcadipani & Dennis Pacheco Lopes da Silva & Samira Bueno & Renato Sergio de Lima, 2021. "Making black lives don't matter via organizational strategies to avoid the racial debate: The military police in Brazil," Gender, Work and Organization, Wiley Blackwell, vol. 28(4), pages 1683-1696, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael C Knaus, 2022. "Double machine learning-based programme evaluation under unconfoundedness [Econometric methods for program evaluation]," The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 602-627.
    2. Huber, Martin, 2019. "An introduction to flexible methods for policy evaluation," FSES Working Papers 504, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    3. Goller, Daniel & Harrer, Tamara & Lechner, Michael & Wolff, Joachim, 2021. "Active labour market policies for the long-term unemployed: New evidence from causal machine learning," Economics Working Paper Series 2108, University of St. Gallen, School of Economics and Political Science.
    4. Ruohan Zhan & Zhimei Ren & Susan Athey & Zhengyuan Zhou, 2021. "Policy Learning with Adaptively Collected Data," Papers 2105.02344, arXiv.org, revised Nov 2022.
    5. Davide Viviano, 2019. "Policy Targeting under Network Interference," Papers 1906.10258, arXiv.org, revised Apr 2024.
    6. Masahiro Kato, 2020. "Confidence Interval for Off-Policy Evaluation from Dependent Samples via Bandit Algorithm: Approach from Standardized Martingales," Papers 2006.06982, arXiv.org.
    7. Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-dimensional econometrics and regularized GMM," CeMMAP working papers CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    8. Nicolaj N. Mühlbach, 2020. "Tree-based Synthetic Control Methods: Consequences of moving the US Embassy," CREATES Research Papers 2020-04, Department of Economics and Business Economics, Aarhus University.
    9. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP72/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    10. Sant’Anna, Pedro H.C. & Zhao, Jun, 2020. "Doubly robust difference-in-differences estimators," Journal of Econometrics, Elsevier, vol. 219(1), pages 101-122.
    11. Ruoxuan Xiong & Allison Koenecke & Michael Powell & Zhu Shen & Joshua T. Vogelstein & Susan Athey, 2021. "Federated Causal Inference in Heterogeneous Observational Data," Papers 2107.11732, arXiv.org, revised Apr 2023.
    12. Khanh Duong, 2024. "Is meritocracy just? New evidence from Boolean analysis and Machine learning," Journal of Computational Social Science, Springer, vol. 7(2), pages 1795-1821, October.
    13. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    14. Jelena Bradic & Weijie Ji & Yuqian Zhang, 2021. "High-dimensional Inference for Dynamic Treatment Effects," Papers 2110.04924, arXiv.org, revised May 2023.
    15. Davide Viviano & Jelena Bradic, 2019. "Synthetic learner: model-free inference on treatments over time," Papers 1904.01490, arXiv.org, revised Aug 2022.
    16. Kirill Borusyak & Peter Hull & Xavier Jaravel, 2023. "Design-Based Identification with Formula Instruments: A Review," NBER Working Papers 31393, National Bureau of Economic Research, Inc.
    17. Yoganathan, Vignesh & Osburg, Victoria-Sophie, 2024. "The mind in the machine: Estimating mind perception's effect on user satisfaction with voice-based conversational agents," Journal of Business Research, Elsevier, vol. 175(C).
    18. Sallin, Aurelién, 2021. "Estimating returns to special education: combining machine learning and text analysis to address confounding," Economics Working Paper Series 2109, University of St. Gallen, School of Economics and Political Science.
    19. Pedro Carneiro & Sokbae Lee & Daniel Wilhelm, 2020. "Optimal data collection for randomized control trials," The Econometrics Journal, Royal Economic Society, vol. 23(1), pages 1-31.
    20. Sung Jae Jun & Sokbae Lee, 2024. "Causal Inference Under Outcome-Based Sampling with Monotonicity Assumptions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(3), pages 998-1009, July.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2003.07545. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.