IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2002.07964.html
   My bibliography  Save this paper

Tourism Demand Forecasting: An Ensemble Deep Learning Approach

Author

Listed:
  • Shaolong Sun
  • Yanzhao Li
  • Ju-e Guo
  • Shouyang Wang

Abstract

The availability of tourism-related big data increases the potential to improve the accuracy of tourism demand forecasting, but presents significant challenges for forecasting, including curse of dimensionality and high model complexity. A novel bagging-based multivariate ensemble deep learning approach integrating stacked autoencoders and kernel-based extreme learning machines (B-SAKE) is proposed to address these challenges in this study. By using historical tourist arrival data, economic variable data and search intensity index (SII) data, we forecast tourist arrivals in Beijing from four countries. The consistent results of multiple schemes suggest that our proposed B-SAKE approach outperforms benchmark models in terms of level accuracy, directional accuracy and even statistical significance. Both bagging and stacked autoencoder can effectively alleviate the challenges brought by tourism big data and improve the forecasting performance of the models. The ensemble deep learning model we propose contributes to tourism forecasting literature and benefits relevant government officials and tourism practitioners.

Suggested Citation

  • Shaolong Sun & Yanzhao Li & Ju-e Guo & Shouyang Wang, 2020. "Tourism Demand Forecasting: An Ensemble Deep Learning Approach," Papers 2002.07964, arXiv.org, revised Jan 2021.
  • Handle: RePEc:arx:papers:2002.07964
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2002.07964
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ying Liu & Yibing Chen & Sheng Wu & Geng Peng & Benfu Lv, 2015. "Composite leading search index: a preprocessing method of internet search data for stock trends prediction," Annals of Operations Research, Springer, vol. 234(1), pages 77-94, November.
    2. Song, Haiyan & Qiu, Richard T.R. & Park, Jinah, 2019. "A review of research on tourism demand forecasting," Annals of Tourism Research, Elsevier, vol. 75(C), pages 338-362.
    3. Li, Xin & Pan, Bing & Law, Rob & Huang, Xiankai, 2017. "Forecasting tourism demand with composite search index," Tourism Management, Elsevier, vol. 59(C), pages 57-66.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marius-Ionuț Gordan & Cosmin Alin Popescu & Jenica Călina & Tabita Cornelia Adamov & Camelia Maria Mănescu & Tiberiu Iancu, 2024. "Spatial Analysis of Seasonal and Trend Patterns in Romanian Agritourism Arrivals Using Seasonal-Trend Decomposition Using LOESS," Agriculture, MDPI, vol. 14(2), pages 1-24, January.
    2. Hopfe, David H. & Lee, Kiljae & Yu, Chunyan, 2024. "Short-term forecasting airport passenger flow during periods of volatility: Comparative investigation of time series vs. neural network models," Journal of Air Transport Management, Elsevier, vol. 115(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Doris Chenguang Wu & Shiteng Zhong & Richard T R Qiu & Ji Wu, 2022. "Are customer reviews just reviews? Hotel forecasting using sentiment analysis," Tourism Economics, , vol. 28(3), pages 795-816, May.
    2. Zhang, Yishuo & Li, Gang & Muskat, Birgit & Law, Rob & Yang, Yating, 2020. "Group pooling for deep tourism demand forecasting," Annals of Tourism Research, Elsevier, vol. 82(C).
    3. Guizzardi, Andrea & Pons, Flavio Maria Emanuele & Angelini, Giovanni & Ranieri, Ercolino, 2021. "Big data from dynamic pricing: A smart approach to tourism demand forecasting," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1049-1060.
    4. Han Liu & Yongjing Wang & Haiyan Song & Ying Liu, 2023. "Measuring tourism demand nowcasting performance using a monotonicity test," Tourism Economics, , vol. 29(5), pages 1302-1327, August.
    5. Bi, Jian-Wu & Liu, Yang & Li, Hui, 2020. "Daily tourism volume forecasting for tourist attractions," Annals of Tourism Research, Elsevier, vol. 83(C).
    6. Haodong Sun & Yang Yang & Yanyan Chen & Xiaoming Liu & Jiachen Wang, 2023. "Tourism demand forecasting of multi-attractions with spatiotemporal grid: a convolutional block attention module model," Information Technology & Tourism, Springer, vol. 25(2), pages 205-233, June.
    7. Yang, Yang & Fan, Yawen & Jiang, Lan & Liu, Xiaohui, 2022. "Search query and tourism forecasting during the pandemic: When and where can digital footprints be helpful as predictors?," Annals of Tourism Research, Elsevier, vol. 93(C).
    8. Bi, Jian-Wu & Li, Hui & Fan, Zhi-Ping, 2021. "Tourism demand forecasting with time series imaging: A deep learning model," Annals of Tourism Research, Elsevier, vol. 90(C).
    9. Li, Cheng & Ge, Peng & Liu, Zhusheng & Zheng, Weimin, 2020. "Forecasting tourist arrivals using denoising and potential factors," Annals of Tourism Research, Elsevier, vol. 83(C).
    10. Ling Tang & Chengyuan Zhang & Tingfei Li & Ling Li, 2021. "A novel BEMD-based method for forecasting tourist volume with search engine data," Tourism Economics, , vol. 27(5), pages 1015-1038, August.
    11. Fatemeh Binesh & Amanda Belarmino & Carola Raab, 2021. "A meta-analysis of hotel revenue management," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 20(5), pages 546-558, October.
    12. Monge, Manuel & Claudio-Quiroga, Gloria & Poza, Carlos, 2024. "Chinese economic behavior in times of covid-19. A new leading economic indicator based on Google trends," International Economics, Elsevier, vol. 177(C).
    13. Eden Xiaoying Jiao & Jason Li Chen, 2019. "Tourism forecasting: A review of methodological developments over the last decade," Tourism Economics, , vol. 25(3), pages 469-492, May.
    14. Carmela Iorio & Giuseppe Pandolfo & Antonio D’Ambrosio & Roberta Siciliano, 2020. "Mining big data in tourism," Quality & Quantity: International Journal of Methodology, Springer, vol. 54(5), pages 1655-1669, December.
    15. Nicholas Apergis & Konstantinos Gavriilidis & Rangan Gupta, 2023. "Does climate policy uncertainty affect tourism demand? Evidence from time-varying causality tests," Tourism Economics, , vol. 29(6), pages 1484-1498, September.
    16. Xueying Huang & Yuanjun Han & Xuhong Gong & Xiangyan Liu, 2020. "Does the belt and road initiative stimulate China’s inbound tourist market? An empirical study using the gravity model with a DID method," Tourism Economics, , vol. 26(2), pages 299-323, March.
    17. Binru Zhang & Yulian Pu & Yuanyuan Wang & Jueyou Li, 2019. "Forecasting Hotel Accommodation Demand Based on LSTM Model Incorporating Internet Search Index," Sustainability, MDPI, vol. 11(17), pages 1-14, August.
    18. Prabhsimran Singh & Yogesh K. Dwivedi & Karanjeet Singh Kahlon & Ravinder Singh Sawhney & Ali Abdallah Alalwan & Nripendra P. Rana, 0. "Smart Monitoring and Controlling of Government Policies Using Social Media and Cloud Computing," Information Systems Frontiers, Springer, vol. 0, pages 1-23.
    19. Fengzhi Sun & Zihan Li & Mingzhi Xu & Mingcan Han, 2024. "New Changes in Chinese Urban Tourism Pattern under the Impact of COVID-19 Pandemic: Based on Internet Attention," Sustainability, MDPI, vol. 16(14), pages 1-22, July.
    20. Fei Ma & Yujie Zhu & Kum Fai Yuen & Qipeng Sun & Haonan He & Xiaobo Xu & Zhen Shang & Yan Xu, 2022. "Exploring the Spatiotemporal Evolution and Sustainable Driving Factors of Information Flow Network: A Public Search Attention Perspective," IJERPH, MDPI, vol. 19(1), pages 1-25, January.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2002.07964. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.