IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2001.05124.html
   My bibliography  Save this paper

Rational Kernel on Pricing Models of Inflation Derivatives

Author

Listed:
  • Yue Zhou

Abstract

The aim of this thesis is to analyze and renovate few main-stream models on inflation derivatives. In the first chapter of the thesis, concepts of financial instruments and fundamental terms are introduced, such as coupon bond, inflation-indexed bond, swap. In the second chapter of the thesis, classic models along the history of developing quantified interest rate models are introduced and analyzed. Moreover, the classification of interest rate models is introduced to help audiences understand the intrinsic ideology behind each type of models. In the third chapter of the thesis, the related mathematical knowledge is introduced. This part has the contribution on understanding the terms and relation among terms in each model introduced previously. In the fourth part of the thesis, the renovation of HJM frame work is introduced and analysis has been initiated.

Suggested Citation

  • Yue Zhou, 2020. "Rational Kernel on Pricing Models of Inflation Derivatives," Papers 2001.05124, arXiv.org, revised Jan 2020.
  • Handle: RePEc:arx:papers:2001.05124
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2001.05124
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marti G. Subrahmanyam, 1996. "The Term Structure of Interest Rates: Alternative Approaches and Their Implications for the Valuation of Contingent Claims," The Geneva Risk and Insurance Review, Palgrave Macmillan;International Association for the Study of Insurance Economics (The Geneva Association), vol. 21(1), pages 7-28, June.
    2. Chan, K C, et al, 1992. "An Empirical Comparison of Alternative Models of the Short-Term Interest Rate," Journal of Finance, American Finance Association, vol. 47(3), pages 1209-1227, July.
    3. Brennan, Michael J. & Schwartz, Eduardo S., 1982. "An Equilibrium Model of Bond Pricing and a Test of Market Efficiency," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 17(3), pages 301-329, September.
    4. Longstaff, Francis A., 1989. "A nonlinear general equilibrium model of the term structure of interest rates," Journal of Financial Economics, Elsevier, vol. 23(2), pages 195-224, August.
    5. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    6. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    7. Robert Jarrow & Yildiray Yildirim, 2008. "Pricing Treasury Inflation Protected Securities and Related Derivatives using an HJM Model," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 16, pages 349-370, World Scientific Publishing Co. Pte. Ltd..
    8. Cornell, Bradford, 1977. "Spot rates, forward rates and exchange market efficiency," Journal of Financial Economics, Elsevier, vol. 5(1), pages 55-65, August.
    9. John Y. Campbell & Robert J. Shiller & Luis M. Viceira, 2009. "Understanding Inflation-Indexed Bond Markets," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 40(1 (Spring), pages 79-138.
    10. Nabyl Belgrade & Eric Benhamou & Etienne Koehler, 2004. "A market model for inflation," Cahiers de la Maison des Sciences Economiques b04050, Université Panthéon-Sorbonne (Paris 1).
    11. Damiano Brigo & Fabio Mercurio, 2001. "A deterministic-shift extension of analytically-tractable and time-homogeneous short-rate models," Finance and Stochastics, Springer, vol. 5(3), pages 369-387.
    12. Goetzmann, William N. & Rouwenhorst, K. Geert (ed.), 2005. "The Origins of Value: The Financial Innovations that Created Modern Capital Markets," OUP Catalogue, Oxford University Press, number 9780195175714.
    13. Robert J. Shiller, 2003. "The Invention of Inflation-Indexed Bonds in Early America," NBER Working Papers 10183, National Bureau of Economic Research, Inc.
    14. Longstaff, Francis A & Schwartz, Eduardo S, 1992. "Interest Rate Volatility and the Term Structure: A Two-Factor General Equilibrium Model," Journal of Finance, American Finance Association, vol. 47(4), pages 1259-1282, September.
    15. John Y. Campbell & Robert J. Shiller & Luis M. Viceira, 2009. "Understanding Inflation-Indexed Bond Markets," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 40(1 (Spring), pages 79-138.
    16. Dothan, L. Uri, 1978. "On the term structure of interest rates," Journal of Financial Economics, Elsevier, vol. 6(1), pages 59-69, March.
    17. Ho, Thomas S Y & Lee, Sang-bin, 1986. "Term Structure Movements and Pricing Interest Rate Contingent Claims," Journal of Finance, American Finance Association, vol. 41(5), pages 1011-1029, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Josheski Dushko & Apostolov Mico, 2021. "Equilibrium Short-Rate Models Vs No-Arbitrage Models: Literature Review and Computational Examples," Econometrics. Advances in Applied Data Analysis, Sciendo, vol. 25(3), pages 42-71, September.
    2. Boero, G. & Torricelli, C., 1996. "A comparative evaluation of alternative models of the term structure of interest rates," European Journal of Operational Research, Elsevier, vol. 93(1), pages 205-223, August.
    3. Gibson, Rajna & Lhabitant, Francois-Serge & Talay, Denis, 2010. "Modeling the Term Structure of Interest Rates: A Review of the Literature," Foundations and Trends(R) in Finance, now publishers, vol. 5(1–2), pages 1-156, December.
    4. Vetzal, Kenneth R., 1997. "Stochastic volatility, movements in short term interest rates, and bond option values," Journal of Banking & Finance, Elsevier, vol. 21(2), pages 169-196, February.
    5. Franco Parisi, 1998. "Tasas de Interés Nominal de Corto Plazo en Chile: Una Comparación Empírica de sus Modelos," Latin American Journal of Economics-formerly Cuadernos de Economía, Instituto de Economía. Pontificia Universidad Católica de Chile., vol. 35(105), pages 161-182.
    6. Antonio Mele, 2003. "Fundamental Properties of Bond Prices in Models of the Short-Term Rate," The Review of Financial Studies, Society for Financial Studies, vol. 16(3), pages 679-716, July.
    7. Fergusson, Kevin, 2020. "Less-Expensive Valuation And Reserving Of Long-Dated Variable Annuities When Interest Rates And Mortality Rates Are Stochastic," ASTIN Bulletin, Cambridge University Press, vol. 50(2), pages 381-417, May.
    8. repec:uts:finphd:40 is not listed on IDEAS
    9. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    10. Giuseppe Arbia & Michele Di Marcantonio, 2015. "Forecasting Interest Rates Using Geostatistical Techniques," Econometrics, MDPI, vol. 3(4), pages 1-28, November.
    11. repec:wyi:journl:002108 is not listed on IDEAS
    12. Jan Baldeaux & Fung & Katja Ignatieva & Eckhard Platen, 2015. "A Hybrid Model for Pricing and Hedging of Long-dated Bonds," Applied Mathematical Finance, Taylor & Francis Journals, vol. 22(4), pages 366-398, September.
    13. Al-Zoubi, Haitham A., 2009. "Short-term spot rate models with nonparametric deterministic drift," The Quarterly Review of Economics and Finance, Elsevier, vol. 49(3), pages 731-747, August.
    14. Kevin John Fergusson, 2018. "Less-Expensive Pricing and Hedging of Extreme-Maturity Interest Rate Derivatives and Equity Index Options Under the Real-World Measure," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 3-2018, January-A.
    15. Jiang, George J., 1997. "A generalized one-factor term structure model and pricing of interest rate derivative securities," Research Report 97A34, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    16. Constantin Mellios, 2001. "Valuation of Interest Rate Options in a Two-Factor Model of the Term Structure of Interest Rate," Working Papers 2001-1, Laboratoire Orléanais de Gestion - université d'Orléans.
    17. Episcopos, Athanasios, 2000. "Further evidence on alternative continuous time models of the short-term interest rate," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 10(2), pages 199-212, June.
    18. Zongwu Cai & Yongmiao Hong, 2013. "Some Recent Developments in Nonparametric Finance," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    19. repec:dgr:rugsom:97a34 is not listed on IDEAS
    20. Emmanuelle Clément & Christian Gourieroux & Alain Monfort, 1995. "Linear Factor Models and the Term Structure of Interest Rates," Annals of Economics and Statistics, GENES, issue 40, pages 37-65.
    21. Cai, Zongwu & Hong, Yongmiao, 2003. "Nonparametric Methods in Continuous-Time Finance: A Selective Review," SFB 373 Discussion Papers 2003,15, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    22. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    23. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2001.05124. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.