IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2001.01127.html
   My bibliography  Save this paper

Forecasting Bitcoin closing price series using linear regression and neural networks models

Author

Listed:
  • Nicola Uras
  • Lodovica Marchesi
  • Michele Marchesi
  • Roberto Tonelli

Abstract

This paper studies how to forecast daily closing price series of Bitcoin, using data on prices and volumes of prior days. Bitcoin price behaviour is still largely unexplored, presenting new opportunities. We compared our results with two modern works on Bitcoin prices forecasting and with a well-known recent paper that uses Intel, National Bank shares and Microsoft daily NASDAQ closing prices spanning a 3-year interval. We followed different approaches in parallel, implementing both statistical techniques and machine learning algorithms. The SLR model for univariate series forecast uses only closing prices, whereas the MLR model for multivariate series uses both price and volume data. We applied the ADF -Test to these series, which resulted to be indistinguishable from a random walk. We also used two artificial neural networks: MLP and LSTM. We then partitioned the dataset into shorter sequences, representing different price regimes, obtaining best result using more than one previous price, thus confirming our regime hypothesis. All the models were evaluated in terms of MAPE and relativeRMSE. They performed well, and were overall better than those obtained in the benchmarks. Based on the results, it was possible to demonstrate the efficacy of the proposed methodology and its contribution to the state-of-the-art.

Suggested Citation

  • Nicola Uras & Lodovica Marchesi & Michele Marchesi & Roberto Tonelli, 2020. "Forecasting Bitcoin closing price series using linear regression and neural networks models," Papers 2001.01127, arXiv.org.
  • Handle: RePEc:arx:papers:2001.01127
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2001.01127
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marie Briere & Kim Oosterlinck & Ariane Szafarz, 2015. "Virtual Currency, Tangible Return: Portfolio Diversification with Bitcoins," Post-Print CEB, ULB -- Universite Libre de Bruxelles, vol. 16(6), pages 365-373.
    2. Leopoldo Catania & Stefano Grassi & Francesco Ravazzolo, 2018. "Forecasting Cryptocurrencies Financial Time Series," Working Papers No 5/2018, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mtiraoui, Amine & Boubaker, Heni & BelKacem, Lotfi, 2023. "A hybrid approach for forecasting bitcoin series," Research in International Business and Finance, Elsevier, vol. 66(C).
    2. Rico-Peña, Juan Jesús & Arguedas-Sanz, Raquel & López-Martin, Carmen, 2023. "Models used to characterise blockchain features. A systematic literature review and bibliometric analysis," Technovation, Elsevier, vol. 123(C).
    3. Viviane Senna & Adriano Mendonça Souza, 2023. "Impacts of short and long-term between cryptocurrencies and stock exchange indexes," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(1), pages 97-119, February.
    4. Ahmad Alsharef & Sonia & Karan Kumar & Celestine Iwendi, 2022. "Time Series Data Modeling Using Advanced Machine Learning and AutoML," Sustainability, MDPI, vol. 14(22), pages 1-19, November.
    5. Ayush Singh & Anshu K. Jha & Amit N. Kumar, 2024. "Prediction of Cryptocurrency Prices through a Path Dependent Monte Carlo Simulation," Papers 2405.12988, arXiv.org.
    6. Ahmed M. Khedr & Ifra Arif & Pravija Raj P V & Magdi El‐Bannany & Saadat M. Alhashmi & Meenu Sreedharan, 2021. "Cryptocurrency price prediction using traditional statistical and machine‐learning techniques: A survey," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 28(1), pages 3-34, January.
    7. Gbadebo Adedeji Daniel & Akande Joseph Olorunfemi & Adekunle Ahmed Oluwatobi, 2022. "Price Prediction for Bitcoin: Does Periodicity Matter?," International Journal of Business and Economic Sciences Applied Research (IJBESAR), Democritus University of Thrace (DUTH), Kavala Campus, Greece, vol. 15(3), pages 69-92, December.
    8. Bouteska, Ahmed & Abedin, Mohammad Zoynul & Hajek, Petr & Yuan, Kunpeng, 2024. "Cryptocurrency price forecasting – A comparative analysis of ensemble learning and deep learning methods," International Review of Financial Analysis, Elsevier, vol. 92(C).
    9. Ren, Yi-Shuai & Ma, Chao-Qun & Kong, Xiao-Lin & Baltas, Konstantinos & Zureigat, Qasim, 2022. "Past, present, and future of the application of machine learning in cryptocurrency research," Research in International Business and Finance, Elsevier, vol. 63(C).
    10. Qiutong Guo & Shun Lei & Qing Ye & Zhiyang Fang, 2021. "MRC-LSTM: A Hybrid Approach of Multi-scale Residual CNN and LSTM to Predict Bitcoin Price," Papers 2105.00707, arXiv.org.
    11. Nursel Selver Ruzgar & Clare Chua-Chow, 2023. "Behavior of Banks’ Stock Market Prices during Long-Term Crises," IJFS, MDPI, vol. 11(1), pages 1-25, February.
    12. Ana Paula Santos Gularte & Danusio Gadelha Guimarães Filho & Gabriel Oliveira Torres & Thiago Carvalho Nunes Silva & Vitor Venceslau Curtis, 2024. "Machine Learning-Based Time Series Prediction at Brazilian Stocks Exchange," Computational Economics, Springer;Society for Computational Economics, vol. 64(4), pages 2477-2508, October.
    13. Gyana Ranjan Patra & Mihir Narayan Mohanty, 2023. "Price Prediction of Cryptocurrency Using a Multi-Layer Gated Recurrent Unit Network with Multi Features," Computational Economics, Springer;Society for Computational Economics, vol. 62(4), pages 1525-1544, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bouri, Elie & Lucey, Brian & Roubaud, David, 2020. "Cryptocurrencies and the downside risk in equity investments," Finance Research Letters, Elsevier, vol. 33(C).
    2. Christie Smith & Aaron Kumar, 2018. "Crypto‐Currencies – An Introduction To Not‐So‐Funny Moneys," Journal of Economic Surveys, Wiley Blackwell, vol. 32(5), pages 1531-1559, December.
    3. Ariane Szafarz, 2015. "Market Efficiency and Crises:Don’t Throw the Baby out with the Bathwater," Bankers, Markets & Investors, ESKA Publishing, issue 139, pages 20-26, November-.
    4. Bildirici, Melike E. & Sonustun, Bahri, 2021. "Chaotic behavior in gold, silver, copper and bitcoin prices," Resources Policy, Elsevier, vol. 74(C).
    5. Jin, Changlun & Tian, Xiujuan, 2024. "Enhanced safe-haven status of Bitcoin: Evidence from the Silicon Valley Bank collapse," Finance Research Letters, Elsevier, vol. 59(C).
    6. White, Reilly & Marinakis, Yorgos & Islam, Nazrul & Walsh, Steven, 2020. "Is Bitcoin a currency, a technology-based product, or something else?," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    7. Pieters, Gina & Vivanco, Sofia, 2017. "Financial regulations and price inconsistencies across Bitcoin markets," Information Economics and Policy, Elsevier, vol. 39(C), pages 1-14.
    8. Parthajit Kayal & Purnima Rohilla, 2021. "Bitcoin in the economics and finance literature: a survey," SN Business & Economics, Springer, vol. 1(7), pages 1-21, July.
    9. Corbet, Shaen & Katsiampa, Paraskevi & Lau, Chi Keung Marco, 2020. "Measuring quantile dependence and testing directional predictability between Bitcoin, altcoins and traditional financial assets," International Review of Financial Analysis, Elsevier, vol. 71(C).
    10. Bouri, Elie & Gupta, Rangan & Lahiani, Amine & Shahbaz, Muhammad, 2018. "Testing for asymmetric nonlinear short- and long-run relationships between bitcoin, aggregate commodity and gold prices," Resources Policy, Elsevier, vol. 57(C), pages 224-235.
    11. Masafumi Nakano & Akihiko Takahashi & Soichiro Takahashi, 2018. "Bitcoin technical trading with artificial neural network," CIRJE F-Series CIRJE-F-1078, CIRJE, Faculty of Economics, University of Tokyo.
    12. Ting-Hsuan Chen & Mu-Yen Chen & Guan-Ting Du, 2021. "The Determinants of Bitcoin’s Price: Utilization of GARCH and Machine Learning Approaches," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 267-280, January.
    13. Mateus Portelinha & Carlos Heitor Campani & Raphael Roquete, 2021. "The impacts of cryptocurrencies in the performance of Brazilian stocks' portfolios," Economics Bulletin, AccessEcon, vol. 41(3), pages 1919-1931.
    14. Galvani, Valentina & Faychuk, Vita, 2022. "The Mean-Variance Core of Cryptocurrencies: When More is Not Better," Working Papers 2022-4, University of Alberta, Department of Economics.
    15. Masafumi Nakano & Akihiko Takahashi & Soichiro Takahashi, 2018. "Bitcoin technical trading with artificial neural network," CARF F-Series CARF-F-430, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    16. Gidea, Marian & Goldsmith, Daniel & Katz, Yuri & Roldan, Pablo & Shmalo, Yonah, 2020. "Topological recognition of critical transitions in time series of cryptocurrencies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 548(C).
    17. Michael Demmler & Amilcar Orlian Fernández Domínguez, 2021. "Bitcoin and the South Sea Company: A comparative analysis," Revista Finanzas y Politica Economica, Universidad Católica de Colombia, vol. 13(1), pages 197-224, March.
    18. Aniruddha Dutta & Saket Kumar & Meheli Basu, 2020. "A Gated Recurrent Unit Approach to Bitcoin Price Prediction," JRFM, MDPI, vol. 13(2), pages 1-16, February.
    19. Yuanyuan Zhang & Stephen Chan & Jeffrey Chu & Hana Sulieman, 2020. "On the Market Efficiency and Liquidity of High-Frequency Cryptocurrencies in a Bull and Bear Market," JRFM, MDPI, vol. 13(1), pages 1-14, January.
    20. Kajtazi, Anton & Moro, Andrea, 2019. "The role of bitcoin in well diversified portfolios: A comparative global study," International Review of Financial Analysis, Elsevier, vol. 61(C), pages 143-157.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2001.01127. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.