IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1910.14522.html
   My bibliography  Save this paper

Option-based Equity Risk Premiums

Author

Listed:
  • Alan L. Lewis

Abstract

We construct the term structure of the (forward-looking, US market) equity risk premium from SPX option chains. The method is "model-light". Risk-neutral probability densities are estimated by fitting $N$-component Gaussian mixture models to option quotes, where $N$ is a small integer (here 4 or 5). These densities are transformed to their real-world equivalents by exponential tilting with a single parameter: the Coefficient of Relative Risk Aversion $\kappa$. From history, I estimate $\kappa = 3 \pm 0.5$. From the inferred real-world densities, the equity risk premium is readily calculated. Three term structures serve as examples.

Suggested Citation

  • Alan L. Lewis, 2019. "Option-based Equity Risk Premiums," Papers 1910.14522, arXiv.org, revised Apr 2020.
  • Handle: RePEc:arx:papers:1910.14522
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1910.14522
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Back, Kerry, 2010. "Asset Pricing and Portfolio Choice Theory," OUP Catalogue, Oxford University Press, number 9780195380613.
    2. Matthias Fengler, 2009. "Arbitrage-free smoothing of the implied volatility surface," Quantitative Finance, Taylor & Francis Journals, vol. 9(4), pages 417-428.
    3. repec:bla:jfinan:v:59:y:2004:i:1:p:407-446 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:esx:essedp:770 is not listed on IDEAS
    2. Boswijk, H. Peter & Laeven, Roger J.A. & Vladimirov, Evgenii, 2024. "Estimating option pricing models using a characteristic function-based linear state space representation," Journal of Econometrics, Elsevier, vol. 244(1).
    3. Vedant Choudhary & Sebastian Jaimungal & Maxime Bergeron, 2023. "FuNVol: A Multi-Asset Implied Volatility Market Simulator using Functional Principal Components and Neural SDEs," Papers 2303.00859, arXiv.org, revised Dec 2023.
    4. Luong, Phat V. & Xu, Xiaowei, 2020. "Pass-through of commodity price shocks in distribution channels with risk-averse agents," International Journal of Production Economics, Elsevier, vol. 226(C).
    5. Umut c{C}etin & Albina Danilova, 2014. "Markovian Nash equilibrium in financial markets with asymmetric information and related forward-backward systems," Papers 1407.2420, arXiv.org, revised Sep 2016.
    6. Anindya Goswami & Nimit Rana, 2024. "A market resilient data-driven approach to option pricing," Papers 2409.08205, arXiv.org.
    7. Chen, Jia & Li, Degui & Linton, Oliver & Lu, Zudi, 2016. "Semiparametric dynamic portfolio choice with multiple conditioning variables," Journal of Econometrics, Elsevier, vol. 194(2), pages 309-318.
    8. repec:hum:wpaper:sfb649dp2006-010 is not listed on IDEAS
    9. Sigurd Emil Rømer & Rolf Poulsen, 2020. "How Does the Volatility of Volatility Depend on Volatility?," Risks, MDPI, vol. 8(2), pages 1-18, June.
    10. Lambrecht, Marco & Oechssler, Jörg & Weidenholzer, Simon, 2023. "On the benefits of robo-advice in financial markets," Working Papers 0734, University of Heidelberg, Department of Economics.
    11. Andrew Y. Chen & Alejandro Lopez-Lira & Tom Zimmermann, 2022. "Does Peer-Reviewed Research Help Predict Stock Returns?," Papers 2212.10317, arXiv.org, revised Jun 2024.
    12. Lu Zhang, 2017. "The Investment CAPM," European Financial Management, European Financial Management Association, vol. 23(4), pages 545-603, September.
    13. Lu, Xin & Liu, Qiong & Xue, Fengxin, 2019. "Unique closed-form solutions of portfolio selection subject to mean-skewness-normalization constraints," Operations Research Perspectives, Elsevier, vol. 6(C).
    14. Bernales, Alejandro & Guidolin, Massimo, 2015. "Learning to smile: Can rational learning explain predictable dynamics in the implied volatility surface?," Journal of Financial Markets, Elsevier, vol. 26(C), pages 1-37.
    15. Konstantinos Metaxoglou & Davide Pettenuzzo & Aaron Smith, 2019. "Option-Implied Equity Premium Predictions via Entropic Tilting," Journal of Financial Econometrics, Oxford University Press, vol. 17(4), pages 559-586.
    16. Martin Tegn'er & Stephen Roberts, 2019. "A Probabilistic Approach to Nonparametric Local Volatility," Papers 1901.06021, arXiv.org, revised Jan 2019.
    17. Mnacho Echenim & Emmanuel Gobet & Anne-Claire Maurice, 2022. "Unbiasing and robustifying implied volatility calibration in a cryptocurrency market with large bid-ask spreads and missing quotes," Papers 2207.02989, arXiv.org.
    18. Salazar Celis, Oliver & Liang, Lingzhi & Lemmens, Damiaan & Tempère, Jacques & Cuyt, Annie, 2015. "Determining and benchmarking risk neutral distributions implied from option prices," Applied Mathematics and Computation, Elsevier, vol. 258(C), pages 372-387.
    19. Arindam Kundu & Sumit Kumar & Nutan Kumar Tomar, 2024. "A Semi-Closed Form Approximation of Arbitrage-Free Call Option Price Surface," Computational Economics, Springer;Society for Computational Economics, vol. 63(4), pages 1431-1457, April.
    20. Chen, Jia & Li, Degui & Linton, Oliver, 2019. "A new semiparametric estimation approach for large dynamic covariance matrices with multiple conditioning variables," Journal of Econometrics, Elsevier, vol. 212(1), pages 155-176.
    21. Luo, Deqing & Shan, Xun & Yan, Jingzhou & Yan, Qianhui, 2023. "Sustainable investment under ESG volatility and ambiguity," Economic Modelling, Elsevier, vol. 128(C).
    22. Wenyong Zhang & Lingfei Li & Gongqiu Zhang, 2021. "A Two-Step Framework for Arbitrage-Free Prediction of the Implied Volatility Surface," Papers 2106.07177, arXiv.org, revised Jan 2022.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1910.14522. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.