IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1910.07564.html
   My bibliography  Save this paper

Residual Switching Network for Portfolio Optimization

Author

Listed:
  • Jifei Wang
  • Lingjing Wang

Abstract

This paper studies deep learning methodologies for portfolio optimization in the US equities market. We present a novel residual switching network that can automatically sense changes in market regimes and switch between momentum and reversal predictors accordingly. The residual switching network architecture combines two separate residual networks (ResNets), namely a switching module that learns stock market conditions, and the main module that learns momentum and reversal predictors. We demonstrate that over-fitting noisy financial data can be controlled with stacked residual blocks and further incorporating the attention mechanism can enhance powerful predictive properties. Over the period 2008 to H12017, the residual switching network (Switching-ResNet) strategy verified superior out-of-sample performance with an average annual Sharpe ratio of 2.22, compared with an average annual Sharpe ratio of 0.81 for the ANN-based strategy and 0.69 for the linear model.

Suggested Citation

  • Jifei Wang & Lingjing Wang, 2019. "Residual Switching Network for Portfolio Optimization," Papers 1910.07564, arXiv.org.
  • Handle: RePEc:arx:papers:1910.07564
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1910.07564
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dimitri Vayanos & Paul Woolley, 2013. "An Institutional Theory of Momentum and Reversal," The Review of Financial Studies, Society for Financial Studies, vol. 26(5), pages 1087-1145.
    2. Engel, Charles, 1994. "Can the Markov switching model forecast exchange rates?," Journal of International Economics, Elsevier, vol. 36(1-2), pages 151-165, February.
    3. Tim Bollerslev & Benjamin Hood & John Huss & Lasse Heje Pedersen, 2018. "Risk Everywhere: Modeling and Managing Volatility," The Review of Financial Studies, Society for Financial Studies, vol. 31(7), pages 2729-2773.
    4. Chang-Jin Kim & Charles R. Nelson, 1998. "Business Cycle Turning Points, A New Coincident Index, And Tests Of Duration Dependence Based On A Dynamic Factor Model With Regime Switching," The Review of Economics and Statistics, MIT Press, vol. 80(2), pages 188-201, May.
    5. Wei Bao & Jun Yue & Yulei Rao, 2017. "A deep learning framework for financial time series using stacked autoencoders and long-short term memory," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-24, July.
    6. Marco Avellaneda & Jeong-Hyun Lee, 2010. "Statistical arbitrage in the US equities market," Quantitative Finance, Taylor & Francis Journals, vol. 10(7), pages 761-782.
    7. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    8. Chen, Zhuo & Lu, Andrea, 2017. "Slow diffusion of information and price momentum in stocks: Evidence from options markets," Journal of Banking & Finance, Elsevier, vol. 75(C), pages 98-108.
    9. Jegadeesh, Narasimhan & Titman, Sheridan, 1993. "Returns to Buying Winners and Selling Losers: Implications for Stock Market Efficiency," Journal of Finance, American Finance Association, vol. 48(1), pages 65-91, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Flori, Andrea & Regoli, Daniele, 2021. "Revealing Pairs-trading opportunities with long short-term memory networks," European Journal of Operational Research, Elsevier, vol. 295(2), pages 772-791.
    2. Polbin, Andrey & Shumilov, Andrei & Bedin, Andrey & Kulikov, Alexander, 2019. "Модель Реального Обменного Курса Рубля С Марковскими Переключениями Режимов [Modeling real exchange rate of the Russian ruble using Markov regime-switching approach]," MPRA Paper 93310, University Library of Munich, Germany.
    3. Edoardo Otranto, 2005. "The multi-chain Markov switching model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 24(7), pages 523-537.
    4. Auer, Benjamin R. & Rottmann, Horst, 2019. "Have capital market anomalies worldwide attenuated in the recent era of high liquidity and trading activity?," Journal of Economics and Business, Elsevier, vol. 103(C), pages 61-79.
    5. Liu, Wen-Hsien & Chyi, Yih-Luan, 2006. "A Markov regime-switching model for the semiconductor industry cycles," Economic Modelling, Elsevier, vol. 23(4), pages 569-578, July.
    6. Chung-Ming Kuan, 2013. "Markov switching model (in Russian)," Quantile, Quantile, issue 11, pages 13-40, December.
    7. Kai Li, 2014. "Asset Price Dynamics with Heterogeneous Beliefs and Time Delays," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2014, January-A.
    8. Kai Li, 2014. "Asset Price Dynamics with Heterogeneous Beliefs and Time Delays," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 13, July-Dece.
    9. Carstensen, Kai & Heinrich, Markus & Reif, Magnus & Wolters, Maik H., 2020. "Predicting ordinary and severe recessions with a three-state Markov-switching dynamic factor model," International Journal of Forecasting, Elsevier, vol. 36(3), pages 829-850.
    10. Valentina Aprigliano & Danilo Liberati, 2021. "Using Credit Variables to Date Business Cycle and to Estimate the Probabilities of Recession in Real Time," Manchester School, University of Manchester, vol. 89(S1), pages 76-96, September.
    11. Chun-Chang Lee & Chih-Min Liang & Hsing-Jung Chou, 2013. "Identifying Taiwan real estate cycle turning points- An application of the multivariate Markov-switching autoregressive Model," Advances in Management and Applied Economics, SCIENPRESS Ltd, vol. 3(2), pages 1-1.
    12. John M. Maheu & Thomas H. McCurdy, 2002. "Nonlinear Features of Realized FX Volatility," The Review of Economics and Statistics, MIT Press, vol. 84(4), pages 668-681, November.
    13. Kobana Abukari & Isaac Otchere, 2020. "Dominance of hybrid contratum strategies over momentum and contrarian strategies: half a century of evidence," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 34(4), pages 471-505, December.
    14. Sergey V. Smirnov & Nikolay V. Kondrashov & Anna V. Petronevich, 2017. "Dating Cyclical Turning Points for Russia: Formal Methods and Informal Choices," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 13(1), pages 53-73, May.
    15. Chris Stivers & Licheng Sun, 2013. "Market Cycles and the Performance of Relative Strength Strategies," Financial Management, Financial Management Association International, vol. 42(2), pages 263-290, June.
    16. Vitor Castro, 2015. "The Portuguese business cycle: chronology and duration dependence," Empirical Economics, Springer, vol. 49(1), pages 325-342, August.
    17. Jaehee Kim & Sooyoung Cheon, 2010. "A Bayesian regime‐switching time‐series model," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(5), pages 365-378, September.
    18. Chen, Jiun-Lin & Sanger, Gary C. & Song, Wei-Ling, 2019. "The relationship insurance role of financial conglomerates: Evidence from earnings announcements," Journal of Corporate Finance, Elsevier, vol. 58(C), pages 505-527.
    19. Reitz, Stefan, 2006. "On the predictive content of technical analysis," The North American Journal of Economics and Finance, Elsevier, vol. 17(2), pages 121-137, August.
    20. Nicholas Apergis & Vasilios Plakandaras & Ioannis Pragidis, 2022. "Industry momentum and reversals in stock markets," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(3), pages 3093-3138, July.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1910.07564. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.