IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1908.05850.html
   My bibliography  Save this paper

Linear Stochastic Dividend Model

Author

Listed:
  • Sander Willems

Abstract

In this paper we propose a new model for pricing stock and dividend derivatives. We jointly specify dynamics for the stock price and the dividend rate such that the stock price is positive and the dividend rate non-negative. In its simplest form, the model features a dividend rate that is mean-reverting around a constant fraction of the stock price. The advantage of directly specifying dynamics for the dividend rate, as opposed to the more common approach of modeling the dividend yield, is that it is easier to keep the distribution of cumulative dividends tractable. The model is non-affine but does belong to the more general class of polynomial processes, which allows us to compute all conditional moments of the stock price and the cumulative dividends explicitly. In particular, we have closed-form expressions for the prices of stock and dividend futures. Prices of stock and dividend options are accurately approximated using a moment matching technique based on the principle of maximal entropy.

Suggested Citation

  • Sander Willems, 2019. "Linear Stochastic Dividend Model," Papers 1908.05850, arXiv.org, revised Aug 2019.
  • Handle: RePEc:arx:papers:1908.05850
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1908.05850
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. R. S. Tunaru, 2018. "Dividend derivatives," Quantitative Finance, Taylor & Francis Journals, vol. 18(1), pages 63-81, January.
    2. Damien Ackerer & Damir Filipovi'c, 2016. "Linear Credit Risk Models," Papers 1605.07419, arXiv.org, revised Jul 2019.
    3. Damir Filipović & Martin Larsson, 2016. "Polynomial diffusions and applications in finance," Finance and Stochastics, Springer, vol. 20(4), pages 931-972, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christa Cuchiero & Sara Svaluto-Ferro, 2019. "Infinite dimensional polynomial processes," Papers 1911.02614, arXiv.org.
    2. Peter Carr & Sander Willems, 2019. "A lognormal type stochastic volatility model with quadratic drift," Papers 1908.07417, arXiv.org.
    3. Damien Ackerer & Thibault Vatter, 2016. "Dependent Defaults and Losses with Factor Copula Models," Papers 1610.03050, arXiv.org, revised Jan 2018.
    4. Damir Filipovi'c & Martin Larsson, 2017. "Polynomial Jump-Diffusion Models," Papers 1711.08043, arXiv.org, revised Jul 2019.
    5. Christa Cuchiero, 2017. "Polynomial processes in stochastic portfolio theory," Papers 1705.03647, arXiv.org.
    6. Christa Cuchiero & Martin Larsson & Sara Svaluto-Ferro, 2018. "Probability measure-valued polynomial diffusions," Papers 1807.03229, arXiv.org.
    7. David Itkin & Martin Larsson, 2021. "On A Class Of Rank-Based Continuous Semimartingales," Papers 2104.04396, arXiv.org.
    8. Christa Cuchiero & Luca Di Persio & Francesco Guida & Sara Svaluto-Ferro, 2022. "Measure-valued processes for energy markets," Papers 2210.09331, arXiv.org.
    9. Larsson, Martin & Pulido, Sergio, 2017. "Polynomial diffusions on compact quadric sets," Stochastic Processes and their Applications, Elsevier, vol. 127(3), pages 901-926.
    10. Pierre-Edouard Arrouy & Sophian Mehalla & Bernard Lapeyre & Alexandre Boumezoued, 2020. "Jacobi Stochastic Volatility factor for the Libor Market Model," Working Papers hal-02468583, HAL.
    11. Christa Cuchiero & Sara Svaluto-Ferro, 2021. "Infinite-dimensional polynomial processes," Finance and Stochastics, Springer, vol. 25(2), pages 383-426, April.
    12. Alfeus, Mesias & Grasselli, Martino & Schlögl, Erik, 2020. "A consistent stochastic model of the term structure of interest rates for multiple tenors," Journal of Economic Dynamics and Control, Elsevier, vol. 114(C).
    13. repec:uts:finphd:41 is not listed on IDEAS
    14. Damien Ackerer & Damir Filipović & Sergio Pulido, 2018. "The Jacobi stochastic volatility model," Finance and Stochastics, Springer, vol. 22(3), pages 667-700, July.
    15. Pierre-Edouard Arrouy & Alexandre Boumezoued & Bernard Lapeyre & Sophian Mehalla, 2022. "Jacobi stochastic volatility factor for the LIBOR market model," Finance and Stochastics, Springer, vol. 26(4), pages 771-823, October.
    16. Paolo Guasoni & Kwok Chuen Wong, 2020. "Asset prices in segmented and integrated markets," Finance and Stochastics, Springer, vol. 24(4), pages 939-980, October.
    17. Ariel Neufeld & Philipp Schmocker, 2022. "Chaotic Hedging with Iterated Integrals and Neural Networks," Papers 2209.10166, arXiv.org, revised Jul 2024.
    18. Damir Filipovi'c & Kathrin Glau & Yuji Nakatsukasa & Francesco Statti, 2019. "Weighted Monte Carlo with least squares and randomized extended Kaczmarz for option pricing," Papers 1910.07241, arXiv.org.
    19. Cuchiero, Christa, 2019. "Polynomial processes in stochastic portfolio theory," Stochastic Processes and their Applications, Elsevier, vol. 129(5), pages 1829-1872.
    20. Eduardo Abi Jaber & Bruno Bouchard & Camille Illand & Eduardo Abi Jaber, 2018. "Stochastic invariance of closed sets with non-Lipschitz coefficients," Post-Print hal-01349639, HAL.
    21. Damir Filipovic, 2023. "Discount Models," Papers 2306.16871, arXiv.org, revised Jul 2023.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1908.05850. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.