IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1907.11634.html
   My bibliography  Save this paper

Recommendation Engine for Lower Interest Borrowing on Peer to Peer Lending (P2PL) Platform

Author

Listed:
  • Ke Ren
  • Avinash Malik

Abstract

Online Peer to Peer Lending (P2PL) systems connect lenders and borrowers directly, thereby making it convenient to borrow and lend money without intermediaries such as banks. Many recommendation systems have been developed for lenders to achieve higher interest rates and avoid defaulting loans. However, there has not been much research in developing recommendation systems to help borrowers make wise decisions. On P2PL platforms, borrowers can either apply for bidding loans, where the interest rate is determined by lenders bidding on a loan or traditional loans where the P2PL platform determines the interest rate. Different borrower grades -- determining the credit worthiness of borrowers get different interest rates via these two mechanisms. Hence, it is essential to determine which type of loans borrowers should apply for. In this paper, we build a recommendation system that recommends to any new borrower the type of loan they should apply for. Using our recommendation system, any borrower can achieve lowered interest rates with a higher likelihood of getting funded.

Suggested Citation

  • Ke Ren & Avinash Malik, 2019. "Recommendation Engine for Lower Interest Borrowing on Peer to Peer Lending (P2PL) Platform," Papers 1907.11634, arXiv.org.
  • Handle: RePEc:arx:papers:1907.11634
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1907.11634
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Herzenstein, Michal & Dholakia, Utpal M. & Andrews, Rick L., 2011. "Strategic Herding Behavior in Peer-to-Peer Loan Auctions," Journal of Interactive Marketing, Elsevier, vol. 25(1), pages 27-36.
    2. Guo, Yanhong & Zhou, Wenjun & Luo, Chunyu & Liu, Chuanren & Xiong, Hui, 2016. "Instance-based credit risk assessment for investment decisions in P2P lending," European Journal of Operational Research, Elsevier, vol. 249(2), pages 417-426.
    3. Barasinska Nataliya & Schäfer Dorothea, 2014. "Is Crowdfunding Different? Evidence on the Relation between Gender and Funding Success from a German Peer-to-Peer Lending Platform," German Economic Review, De Gruyter, vol. 15(4), pages 436-452, December.
    4. David Feldman & Shulamith Gross, 2005. "Mortgage Default: Classification Trees Analysis," The Journal of Real Estate Finance and Economics, Springer, vol. 30(4), pages 369-396, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dongwoo Kim, 2023. "Can investors’ collective decision-making evolve? Evidence from peer-to-peer lending markets," Electronic Commerce Research, Springer, vol. 23(2), pages 1323-1358, June.
    2. Xueru Chen & Xiaoji Hu & Shenglin Ben, 2021. "How do reputation, structure design and FinTech ecosystem affect the net cash inflow of P2P lending platforms? Evidence from China," Electronic Commerce Research, Springer, vol. 21(4), pages 1055-1082, December.
    3. Wang, Qi & Xiong, Xiong & Zheng, Zunxin, 2021. "Platform Characteristics and Online Peer-to-Peer Lending: Evidence from China," Finance Research Letters, Elsevier, vol. 38(C).
    4. Gaigalienė Asta & Česnys Dovydas, 2018. "Determinants of Default in Lithuanian Peer-To-Peer Platforms," Management of Organizations: Systematic Research, Sciendo, vol. 80(1), pages 19-36, December.
    5. Faten Ben Slimane & Antoine Rousseau, 2020. "Crowdlending Campaigns for Renewable Energy: Success Factors," Post-Print hal-02371926, HAL.
    6. Chen, Rongda & Chen, Yikai & Jin, Chenglu & Xu, Guorui & Bao, Weiwei & Guo, Kenan, 2021. "Characteristics and mechanisms of not-fully marketized interest rates: Evidence from Chinese online lending," Research in International Business and Finance, Elsevier, vol. 55(C).
    7. Michal Polena & Tobias Regner, 2018. "Determinants of Borrowers’ Default in P2P Lending under Consideration of the Loan Risk Class," Games, MDPI, vol. 9(4), pages 1-17, October.
    8. Xia, Yufei & Zhao, Junhao & He, Lingyun & Li, Yinguo & Yang, Xiaoli, 2021. "Forecasting loss given default for peer-to-peer loans via heterogeneous stacking ensemble approach," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1590-1613.
    9. Zhang, Zan & Hu, Wenjun & Chang, Tsangyao, 2019. "Nonlinear effects of P2P lending on bank loans in a Panel Smooth Transition Regression model," International Review of Economics & Finance, Elsevier, vol. 59(C), pages 468-473.
    10. Wei Zhang & Yingxiu Zhao & Pengfei Wang & Dehua Shen, 2020. "Investor Sentiment and the Return Rate of P2P Lending Platform," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 27(1), pages 97-113, March.
    11. Adam Nowak & Amanda Ross & Christopher Yencha, 2018. "Small Business Borrowing And Peer‐To‐Peer Lending: Evidence From Lending Club," Contemporary Economic Policy, Western Economic Association International, vol. 36(2), pages 318-336, April.
    12. Douglas J. Cumming & Lars Hornuf, 2020. "Marketplace Lending of SMEs," CESifo Working Paper Series 8100, CESifo.
    13. Andreas Hoegen & Dennis M. Steininger & Daniel Veit, 2018. "How do investors decide? An interdisciplinary review of decision-making in crowdfunding," Electronic Markets, Springer;IIM University of St. Gallen, vol. 28(3), pages 339-365, August.
    14. Chen, Rongda & Yu, Jingjing & Jin, Chenglu & Bao, Weiwei, 2019. "Internet finance investor sentiment and return comovement," Pacific-Basin Finance Journal, Elsevier, vol. 56(C), pages 151-161.
    15. Samuel Ribeiro-Navarrete & Juan Piñeiro-Chousa & M. Ángeles López-Cabarcos & Daniel Palacios-Marqués, 2022. "Crowdlending: mapping the core literature and research frontiers," Review of Managerial Science, Springer, vol. 16(8), pages 2381-2411, November.
    16. Guo, Yanhong & Zhou, Wenjun & Luo, Chunyu & Liu, Chuanren & Xiong, Hui, 2016. "Instance-based credit risk assessment for investment decisions in P2P lending," European Journal of Operational Research, Elsevier, vol. 249(2), pages 417-426.
    17. Gao, Guang-Xin & Fan, Zhi-Ping & Fang, Xin & Lim, Yun Fong, 2018. "Optimal Stackelberg strategies for financing a supply chain through online peer-to-peer lending," European Journal of Operational Research, Elsevier, vol. 267(2), pages 585-597.
    18. Ruomeng Cui & Dennis J. Zhang & Achal Bassamboo, 2019. "Learning from Inventory Availability Information: Evidence from Field Experiments on Amazon," Management Science, INFORMS, vol. 65(3), pages 1216-1235, March.
    19. Jörg Prokop & Dandan Wang, 2022. "Is there a gender gap in equity-based crowdfunding?," Small Business Economics, Springer, vol. 59(3), pages 1219-1244, October.
    20. Emil Adamek & Jan Janku, 2022. "What Drives Small Business Crowdfunding? Impact of Macroeconomic and Financial Factors," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 72(2), pages 172-196, June.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1907.11634. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.