IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1906.11481.html
   My bibliography  Save this paper

Broken Detailed Balance and Non-Equilibrium Dynamics in Noisy Social Learning Models

Author

Listed:
  • Tushar Vaidya
  • Thiparat Chotibut
  • Georgios Piliouras

Abstract

We propose new Degroot-type social learning models with feedback in a continuous time, to investigate the effect of a noisy information source on consensus formation in a social network. Unlike the standard Degroot framework, noisy information models destroy consensus formation. On the other hand, the noisy opinion dynamics converge to the equilibrium distribution that encapsulates correlations among agents' opinions. Interestingly, such an equilibrium distribution is also a non-equilibrium steady state (NESS) with a non-zero probabilistic current loop. Thus, noisy information source leads to a NESS at long times that encodes persistent correlated opinion dynamics of learning agents. Our model provides a simple realization of NESS in the context of social learning. Other phenomena such as synchronization of opinions when agents are subject to a common noise are also studied.

Suggested Citation

  • Tushar Vaidya & Thiparat Chotibut & Georgios Piliouras, 2019. "Broken Detailed Balance and Non-Equilibrium Dynamics in Noisy Social Learning Models," Papers 1906.11481, arXiv.org, revised May 2020.
  • Handle: RePEc:arx:papers:1906.11481
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1906.11481
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rainer Hegselmann & Ulrich Krause, 2002. "Opinion Dynamics and Bounded Confidence Models, Analysis and Simulation," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 5(3), pages 1-2.
    2. Arun G. Chandrasekhar & Horacio Larreguy & Juan Pablo Xandri, 2015. "Testing Models of Social Learning on Networks: Evidence from a Lab Experiment in the Field," NBER Working Papers 21468, National Bureau of Economic Research, Inc.
    3. An, Ing & Chen, Shi & Guo, Han-ying, 1984. "Search for the symmetry of the Fokker-Planck equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 128(3), pages 520-528.
    4. Bindel, David & Kleinberg, Jon & Oren, Sigal, 2015. "How bad is forming your own opinion?," Games and Economic Behavior, Elsevier, vol. 92(C), pages 248-265.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vaidya, Tushar & Chotibut, Thiparat & Piliouras, Georgios, 2021. "Broken detailed balance and non-equilibrium dynamics in noisy social learning models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).
    2. Kareeva, Yulia & Sedakov, Artem & Zhen, Mengke, 2023. "Influence in social networks with stubborn agents: From competition to bargaining," Applied Mathematics and Computation, Elsevier, vol. 444(C).
    3. Shang, Cui & Zhang, Runtong & Zhu, Xiaomin, 2023. "The influence of social embedding on belief system and its application in online public opinion guidance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 623(C).
    4. Akylai Taalaibekova, 2018. "Opinion formation in social networks," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 28(2), pages 85-108.
    5. Phillip Monin & Richard Bookstaber, 2017. "Information Flows, the Accuracy of Opinions, and Crashes in a Dynamic Network," Staff Discussion Papers 17-01, Office of Financial Research, US Department of the Treasury.
    6. Muhammad Umar B. Niazi & A. Bülent Özgüler, 2021. "A Differential Game Model of Opinion Dynamics: Accord and Discord as Nash Equilibria," Dynamic Games and Applications, Springer, vol. 11(1), pages 137-160, March.
    7. Griffin, Christopher & Squicciarini, Anna & Jia, Feiran, 2022. "Consensus in complex networks with noisy agents and peer pressure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    8. Catherine A. Glass & David H. Glass, 2021. "Social Influence of Competing Groups and Leaders in Opinion Dynamics," Computational Economics, Springer;Society for Computational Economics, vol. 58(3), pages 799-823, October.
    9. Phillip J. Monin & Richard Bookstaber, 2021. "Information flows and crashes in dynamic social networks," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 16(3), pages 471-495, July.
    10. Buechel, Berno & Hellmann, Tim & Klößner, Stefan, 2015. "Opinion dynamics and wisdom under conformity," Journal of Economic Dynamics and Control, Elsevier, vol. 52(C), pages 240-257.
    11. P. Lencastre & F. Raischel & P. G. Lind, 2014. "The effect of the number of states on the validity of credit ratings," Papers 1409.2661, arXiv.org.
    12. Robin Nicole & Aleksandra Alori'c & Peter Sollich, 2020. "Fragmentation in trader preferences among multiple markets: Market coexistence versus single market dominance," Papers 2012.04103, arXiv.org, revised Aug 2021.
    13. Rusinowska, Agnieszka & Taalaibekova, Akylai, 2019. "Opinion formation and targeting when persuaders have extreme and centrist opinions," Journal of Mathematical Economics, Elsevier, vol. 84(C), pages 9-27.
    14. Shang, Lihui & Zhao, Mingming & Ai, Jun & Su, Zhan, 2021. "Opinion evolution in the Sznajd model on interdependent chains," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    15. Lu, Xi & Mo, Hongming & Deng, Yong, 2015. "An evidential opinion dynamics model based on heterogeneous social influential power," Chaos, Solitons & Fractals, Elsevier, vol. 73(C), pages 98-107.
    16. Andreas Koulouris & Ioannis Katerelos & Theodore Tsekeris, 2013. "Multi-Equilibria Regulation Agent-Based Model of Opinion Dynamics in Social Networks," Interdisciplinary Description of Complex Systems - scientific journal, Croatian Interdisciplinary Society Provider Homepage: http://indecs.eu, vol. 11(1), pages 51-70.
    17. Thomas Moore & Patrick Finley & Nancy Brodsky & Theresa Brown & Benjamin Apelberg & Bridget Ambrose & Robert Glass, 2015. "Modeling Education and Advertising with Opinion Dynamics," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 18(2), pages 1-7.
    18. George Butler & Gabriella Pigozzi & Juliette Rouchier, 2019. "Mixing Dyadic and Deliberative Opinion Dynamics in an Agent-Based Model of Group Decision-Making," Complexity, Hindawi, vol. 2019, pages 1-31, August.
    19. Leonie Geyer & Patrick Mellacher, 2024. "Simulating Party Competition in Dynamic Voter Distributions," Graz Economics Papers 2024-19, University of Graz, Department of Economics.
    20. Huang, Changwei & Hou, Yongzhao & Han, Wenchen, 2023. "Coevolution of consensus and cooperation in evolutionary Hegselmann–Krause dilemma with the cooperation cost," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1906.11481. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.