Metaheuristics optimized feedforward neural networks for efficient stock price prediction
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Ratnadip Adhikari & R. K. Agrawal, 2013. "Hybridization of Artificial Neural Network and Particle Swarm Optimization Methods for Time Series Forecasting," International Journal of Applied Evolutionary Computation (IJAEC), IGI Global, vol. 4(3), pages 75-90, July.
- Hiroshi Konno & Hiroaki Yamazaki, 1991. "Mean-Absolute Deviation Portfolio Optimization Model and Its Applications to Tokyo Stock Market," Management Science, INFORMS, vol. 37(5), pages 519-531, May.
- Pai, Ping-Feng & Lin, Chih-Sheng, 2005. "A hybrid ARIMA and support vector machines model in stock price forecasting," Omega, Elsevier, vol. 33(6), pages 497-505, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Akhter Mohiuddin Rather & V. N. Sastry & Arun Agarwal, 2017. "Stock market prediction and Portfolio selection models: a survey," OPSEARCH, Springer;Operational Research Society of India, vol. 54(3), pages 558-579, September.
- Gupta, Pankaj & Mittal, Garima & Mehlawat, Mukesh Kumar, 2013. "Expected value multiobjective portfolio rebalancing model with fuzzy parameters," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 190-203.
- Giovanni Bonaccolto & Massimiliano Caporin & Sandra Paterlini, 2018.
"Asset allocation strategies based on penalized quantile regression,"
Computational Management Science, Springer, vol. 15(1), pages 1-32, January.
- Giovanni Bonaccolto & Massimiliano Caporin & Sandra Paterlini, 2015. "Asset Allocation Strategies Based on Penalized Quantile Regression," Papers 1507.00250, arXiv.org.
- Giovanni Bonaccolto & Massimiliano Caporin & Sandra Paterlini, 2015. "Asset Allocation Strategies Based On Penalized Quantile Regression," "Marco Fanno" Working Papers 0199, Dipartimento di Scienze Economiche "Marco Fanno".
- Wojtek Michalowski & Włodzimierz Ogryczak, 2001.
"Extending the MAD portfolio optimization model to incorporate downside risk aversion,"
Naval Research Logistics (NRL), John Wiley & Sons, vol. 48(3), pages 185-200, April.
- W. Michalowski & W. Ogryczak, 1998. "Extending the MAD Portfolio Optimization Model to Incorporate Downside Risk Aversion," Working Papers ir98041, International Institute for Applied Systems Analysis.
- Ogryczak, Wlodzimierz & Ruszczynski, Andrzej, 1999.
"From stochastic dominance to mean-risk models: Semideviations as risk measures,"
European Journal of Operational Research, Elsevier, vol. 116(1), pages 33-50, July.
- W. Ogryczak & A. Ruszczynski, 1997. "From Stochastic Dominance to Mean-Risk Models: Semideviations as Risk Measures," Working Papers ir97027, International Institute for Applied Systems Analysis.
- Kamaladdin Fataliyev & Aneesh Chivukula & Mukesh Prasad & Wei Liu, 2021. "Stock Market Analysis with Text Data: A Review," Papers 2106.12985, arXiv.org, revised Jul 2021.
- Najafi, Alireza & Taleghani, Rahman, 2022. "Fractional Liu uncertain differential equation and its application to finance," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
- Liu, Yong-Jun & Zhang, Wei-Guo, 2015. "A multi-period fuzzy portfolio optimization model with minimum transaction lots," European Journal of Operational Research, Elsevier, vol. 242(3), pages 933-941.
- Leitner Johannes, 2005. "Optimal portfolios with expected loss constraints and shortfall risk optimal martingale measures," Statistics & Risk Modeling, De Gruyter, vol. 23(1/2005), pages 49-66, January.
- Massimiliano Caporin & Grégory M. Jannin & Francesco Lisi & Bertrand B. Maillet, 2014.
"A Survey On The Four Families Of Performance Measures,"
Journal of Economic Surveys, Wiley Blackwell, vol. 28(5), pages 917-942, December.
- Massimiliano Caporin & Gregory Jannin & Francesco Lisi & Bertrand Maillet, 2014. "A Survey on the Four Families of Performance Measures," Post-Print hal-02312333, HAL.
- Massimiliano Caporin & Grégory M. Jannin & Francesco Lisi & Bertrand Maillet, 2014. "A Survey on the Four Families of Performance Measures," Post-Print hal-01243416, HAL.
- Dimitrios Kartsonakis Mademlis & Nikolaos Dritsakis, 2021. "Volatility Forecasting using Hybrid GARCH Neural Network Models: The Case of the Italian Stock Market," International Journal of Economics and Financial Issues, Econjournals, vol. 11(1), pages 49-60.
- Murat Köksalan & Ceren Tuncer Şakar, 2016. "An interactive approach to stochastic programming-based portfolio optimization," Annals of Operations Research, Springer, vol. 245(1), pages 47-66, October.
- Branda, Martin, 2013. "Diversification-consistent data envelopment analysis with general deviation measures," European Journal of Operational Research, Elsevier, vol. 226(3), pages 626-635.
- Viet Anh Nguyen & Fan Zhang & Shanshan Wang & Jose Blanchet & Erick Delage & Yinyu Ye, 2021. "Robustifying Conditional Portfolio Decisions via Optimal Transport," Papers 2103.16451, arXiv.org, revised Apr 2024.
- Eduardo Correia & Rodrigo Calili & José Francisco Pessanha & Maria Fatima Almeida, 2023. "Definition of Regulatory Targets for Electricity Non-Technical Losses: Proposition of an Automatic Model-Selection Technique for Panel Data Regressions," Energies, MDPI, vol. 16(6), pages 1-22, March.
- Milan Vaclavik & Josef Jablonsky, 2012. "Revisions of modern portfolio theory optimization model," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(3), pages 473-483, September.
- Justo Puerto & Moises Rodr'iguez-Madrena & Andrea Scozzari, 2019. "Location and portfolio selection problems: A unified framework," Papers 1907.07101, arXiv.org.
- Jinping Zhang & Keming Zhang, 2022. "Portfolio selection models based on interval-valued conditional value at risk (ICVaR) and empirical analysis," Papers 2201.02987, arXiv.org, revised Jul 2022.
- Melvin, Michael & Prins, John & Shand, Duncan, 2013.
"Forecasting Exchange Rates: an Investor Perspective,"
Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 721-750,
Elsevier.
- Michael Melvin & John Prins & Duncan Shand, 2013. "Forecasting Exchange Rates: An Investor Perspective," CESifo Working Paper Series 4238, CESifo.
- Nazarian, Rafik & Gandali Alikhani, Nadiya & Naderi, Esmaeil & Amiri, Ashkan, 2013. "Forecasting Stock Market Volatility: A Forecast Combination Approach," MPRA Paper 46786, University Library of Munich, Germany.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2019-07-15 (Big Data)
- NEP-CMP-2019-07-15 (Computational Economics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1906.10121. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.