IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1906.06648.html
   My bibliography  Save this paper

A Clark-Ocone type formula via Ito calculus and its application to finance

Author

Listed:
  • Takuji Arai
  • Ryoichi Suzuki

Abstract

An explicit martingale representation for random variables described as a functional of a Levy process will be given. The Clark-Ocone theorem shows that integrands appeared in a martingale representation are given by conditional expectations of Malliavin derivatives. Our goal is to extend it to random variables which are not Malliavin differentiable. To this end, we make use of Ito's formula, instead of Malliavin calculus. As an application to mathematical finance, we shall give an explicit representation of locally risk-minimizing strategy of digital options for exponential Levy models. Since the payoff of digital options is described by an indicator function, we also discuss the Malliavin differentiability of indicator functions with respect to Levy processes.

Suggested Citation

  • Takuji Arai & Ryoichi Suzuki, 2019. "A Clark-Ocone type formula via Ito calculus and its application to finance," Papers 1906.06648, arXiv.org.
  • Handle: RePEc:arx:papers:1906.06648
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1906.06648
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Takuji Arai & Yuto Imai & Ryoichi Suzuki, 2016. "Numerical Analysis On Local Risk-Minimization For Exponential Lévy Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(02), pages 1-27, March.
    2. Solé, Josep Lluís & Utzet, Frederic & Vives, Josep, 2007. "Canonical Lévy process and Malliavin calculus," Stochastic Processes and their Applications, Elsevier, vol. 117(2), pages 165-187, February.
    3. Takuji Arai & Ryoichi Suzuki, 2015. "Local risk-minimization for Lévy markets," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 2(02), pages 1-28.
    4. Takuji Arai & Yuto Imai & Ryo Nakashima, 2018. "Numerical analysis on quadratic hedging strategies for normal inverse Gaussian models," Papers 1801.05597, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Masahiro Handa & Noriyoshi Sakuma & Ryoichi Suzuki, 2024. "A Girsanov transformed Clark-Ocone-Haussmann type formula for $$L^1$$ L 1 -pure jump additive processes and its application to portfolio optimization," Annals of Finance, Springer, vol. 20(3), pages 329-352, September.
    2. Takuji Arai & Yuto Imai & Ryo Nakashima, 2018. "Numerical analysis on quadratic hedging strategies for normal inverse Gaussian models," Papers 1801.05597, arXiv.org.
    3. Takuji Arai & Yuto Imai & Ryoichi Suzuki, 2017. "Local risk-minimization for Barndorff-Nielsen and Shephard models," Finance and Stochastics, Springer, vol. 21(2), pages 551-592, April.
    4. Takuji Arai, 2019. "Pricing And Hedging Of Vix Options For Barndorff-Nielsen And Shephard Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(08), pages 1-26, December.
    5. Takuji Arai, 2019. "Pricing and hedging of VIX options for Barndorff-Nielsen and Shephard models," Papers 1904.12260, arXiv.org.
    6. Eden, Richard & Víquez, Juan, 2015. "Nourdin–Peccati analysis on Wiener and Wiener–Poisson space for general distributions," Stochastic Processes and their Applications, Elsevier, vol. 125(1), pages 182-216.
    7. El-Khatib, Youssef & Goutte, Stephane & Makumbe, Zororo S. & Vives, Josep, 2023. "A hybrid stochastic volatility model in a Lévy market," International Review of Economics & Finance, Elsevier, vol. 85(C), pages 220-235.
    8. Jin, Sixian & Schellhorn, Henry & Vives, Josep, 2020. "Dyson type formula for pure jump Lévy processes with some applications to finance," Stochastic Processes and their Applications, Elsevier, vol. 130(2), pages 824-844.
    9. Delong, Lukasz & Imkeller, Peter, 2010. "On Malliavin's differentiability of BSDEs with time delayed generators driven by Brownian motions and Poisson random measures," Stochastic Processes and their Applications, Elsevier, vol. 120(9), pages 1748-1775, August.
    10. Choe, Hi Jun & Lee, Ji Min & Lee, Jung-Kyung, 2018. "Malliavin calculus for subordinated Lévy process," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 392-401.
    11. Laukkarinen, Eija, 2020. "Malliavin smoothness on the Lévy space with Hölder continuous or BV functionals," Stochastic Processes and their Applications, Elsevier, vol. 130(8), pages 4766-4792.
    12. Fujii, Masaaki & Takahashi, Akihiko, 2018. "Quadratic–exponential growth BSDEs with jumps and their Malliavin’s differentiability," Stochastic Processes and their Applications, Elsevier, vol. 128(6), pages 2083-2130.
    13. Murr, Rüdiger, 2013. "Characterization of infinite divisibility by duality formulas. Application to Lévy processes and random measures," Stochastic Processes and their Applications, Elsevier, vol. 123(5), pages 1729-1749.
    14. Horst Osswald, 2009. "A Smooth Approach to Malliavin Calculus for Lévy Processes," Journal of Theoretical Probability, Springer, vol. 22(2), pages 441-473, June.
    15. Takuji Arai, 2021. "Approximate option pricing formula for Barndorff-Nielsen and Shephard model," Papers 2104.10877, arXiv.org.
    16. Ankirchner, Stefan, 2008. "On filtration enlargements and purely discontinuous martingales," Stochastic Processes and their Applications, Elsevier, vol. 118(9), pages 1662-1678, September.
    17. Takuji Arai & Yuto Imai & Ryoichi Suzuki, 2016. "Numerical Analysis On Local Risk-Minimization For Exponential Lévy Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(02), pages 1-27, March.
    18. Suzuki, Ryoichi, 2018. "Malliavin differentiability of indicator functions on canonical Lévy spaces," Statistics & Probability Letters, Elsevier, vol. 137(C), pages 183-190.
    19. Alexander Steinicke, 2016. "Functionals of a Lévy Process on Canonical and Generic Probability Spaces," Journal of Theoretical Probability, Springer, vol. 29(2), pages 443-458, June.
    20. Takuji Arai & Yuto Imai, 2017. "A closed-form representation of mean-variance hedging for additive processes via Malliavin calculus," Papers 1702.07556, arXiv.org, revised Nov 2017.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1906.06648. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.