IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v116y2018icp392-401.html
   My bibliography  Save this article

Malliavin calculus for subordinated Lévy process

Author

Listed:
  • Choe, Hi Jun
  • Lee, Ji Min
  • Lee, Jung-Kyung

Abstract

We develop a chaos expansion for a subordinated Lévy process. This expansion is expressed in terms of Itô’s multiple integral expansion. Considering the jumps occurring due to an underlying process and a subordinator, a mixed chaotic representation is proposed. This representation provides the definition of the Malliavin derivative, which is characterized by increment quotients. Moreover, we introduce a new Clark–Ocone expansion formula for the subordinated Lévy process and provide applications for risk-free hedging in a designed model.

Suggested Citation

  • Choe, Hi Jun & Lee, Ji Min & Lee, Jung-Kyung, 2018. "Malliavin calculus for subordinated Lévy process," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 392-401.
  • Handle: RePEc:eee:chsofr:v:116:y:2018:i:c:p:392-401
    DOI: 10.1016/j.chaos.2018.09.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077918309846
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2018.09.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Solé, Josep Lluís & Utzet, Frederic & Vives, Josep, 2007. "Canonical Lévy process and Malliavin calculus," Stochastic Processes and their Applications, Elsevier, vol. 117(2), pages 165-187, February.
    2. Nualart, David & Schoutens, Wim, 2000. "Chaotic and predictable representations for Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 90(1), pages 109-122, November.
    3. Josep Vives & Jorge A. León & Frederic Utzet & Josep L. Solé, 2002. "On Lévy processes, Malliavin calculus and market models with jumps," Finance and Stochastics, Springer, vol. 6(2), pages 197-225.
    4. Fred Espen Benth & Giulia Di Nunno & Arne Løkka & Bernt Øksendal & Frank Proske, 2003. "Explicit Representation of the Minimal Variance Portfolio in Markets Driven by Lévy Processes," Mathematical Finance, Wiley Blackwell, vol. 13(1), pages 55-72, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. El-Khatib, Youssef & Goutte, Stephane & Makumbe, Zororo S. & Vives, Josep, 2023. "A hybrid stochastic volatility model in a Lévy market," International Review of Economics & Finance, Elsevier, vol. 85(C), pages 220-235.
    2. Horst Osswald, 2009. "A Smooth Approach to Malliavin Calculus for Lévy Processes," Journal of Theoretical Probability, Springer, vol. 22(2), pages 441-473, June.
    3. Ankirchner, Stefan, 2008. "On filtration enlargements and purely discontinuous martingales," Stochastic Processes and their Applications, Elsevier, vol. 118(9), pages 1662-1678, September.
    4. Bernardo D'Auria & Jos'e A. Salmer'on, 2021. "Anticipative information in a Brownian-Poissonmarket: the binary information," Papers 2111.01529, arXiv.org.
    5. Jin, Sixian & Schellhorn, Henry & Vives, Josep, 2020. "Dyson type formula for pure jump Lévy processes with some applications to finance," Stochastic Processes and their Applications, Elsevier, vol. 130(2), pages 824-844.
    6. Davis, Mark H.A. & Johansson, Martin P., 2006. "Malliavin Monte Carlo Greeks for jump diffusions," Stochastic Processes and their Applications, Elsevier, vol. 116(1), pages 101-129, January.
    7. Solé, Josep Lluís & Utzet, Frederic & Vives, Josep, 2007. "Canonical Lévy process and Malliavin calculus," Stochastic Processes and their Applications, Elsevier, vol. 117(2), pages 165-187, February.
    8. Takuji Arai & Yuto Imai, 2017. "A closed-form representation of mean-variance hedging for additive processes via Malliavin calculus," Papers 1702.07556, arXiv.org, revised Nov 2017.
    9. Leonidas S. Rompolis & Elias Tzavalis, 2017. "Pricing and hedging contingent claims using variance and higher order moment swaps," Quantitative Finance, Taylor & Francis Journals, vol. 17(4), pages 531-550, April.
    10. Auguste Aman, 2012. "Reflected Generalized Backward Doubly SDEs Driven by Lévy Processes and Applications," Journal of Theoretical Probability, Springer, vol. 25(4), pages 1153-1172, December.
    11. Eden, Richard & Víquez, Juan, 2015. "Nourdin–Peccati analysis on Wiener and Wiener–Poisson space for general distributions," Stochastic Processes and their Applications, Elsevier, vol. 125(1), pages 182-216.
    12. Wagner, Stefan, 2024. "Orthogonal intertwiners for infinite particle systems in the continuum," Stochastic Processes and their Applications, Elsevier, vol. 168(C).
    13. Fan, Xiliang & Ren, Yong & Zhu, Dongjin, 2010. "A note on the doubly reflected backward stochastic differential equations driven by a Lévy process," Statistics & Probability Letters, Elsevier, vol. 80(7-8), pages 690-696, April.
    14. Klimsiak, Tomasz, 2015. "Reflected BSDEs on filtered probability spaces," Stochastic Processes and their Applications, Elsevier, vol. 125(11), pages 4204-4241.
    15. Delong, Lukasz & Imkeller, Peter, 2010. "On Malliavin's differentiability of BSDEs with time delayed generators driven by Brownian motions and Poisson random measures," Stochastic Processes and their Applications, Elsevier, vol. 120(9), pages 1748-1775, August.
    16. D'Auria, Bernardo & Salmerón Garrido, José Antonio, 2021. "Anticipative information in a Brownian-Poisson market: the binary information," DES - Working Papers. Statistics and Econometrics. WS 33624, Universidad Carlos III de Madrid. Departamento de Estadística.
    17. Yip, Wing & Stephens, David & Olhede, Sofia, 2008. "Hedging strategies and minimal variance portfolios for European and exotic options in a Levy market," MPRA Paper 11176, University Library of Munich, Germany.
    18. Fujii, Masaaki & Takahashi, Akihiko, 2018. "Quadratic–exponential growth BSDEs with jumps and their Malliavin’s differentiability," Stochastic Processes and their Applications, Elsevier, vol. 128(6), pages 2083-2130.
    19. Elisa Alòs & Christian-Olivier Ewald, 2005. "A note on the Malliavin differentiability of the Heston volatility," Economics Working Papers 880, Department of Economics and Business, Universitat Pompeu Fabra.
    20. Gurjeet Dhesi & Bilal Shakeel & Marcel Ausloos, 2021. "Modelling and forecasting the kurtosis and returns distributions of financial markets: irrational fractional Brownian motion model approach," Annals of Operations Research, Springer, vol. 299(1), pages 1397-1410, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:116:y:2018:i:c:p:392-401. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.